In condensed matter physics, a spin wave is a propagating disturbance in the ordering of a magnetic material. These low-lying collective excitations occur in magnetic lattices with continuous symmetry. From the equivalent quasiparticle point of view, spin waves are known as magnons, which are bosonic modes of the spin lattice that correspond roughly to the phonon excitations of the nuclear lattice. As temperature is increased, the thermal excitation of spin waves reduces a ferromagnet's spontaneous magnetization. The energies of spin waves are typically only μeV in keeping with typical Curie points at room temperature and below.
The simplest way of understanding spin waves is to consider the Hamiltonian for the Heisenberg ferromagnet:
where J is the exchange energy, the operators S represent the spins at Bravais lattice points, g is the Landé g-factor, μB is the Bohr magneton and H is the internal field which includes the external field plus any "molecular" field. Note that in the classical continuum case and in 1 + 1 dimensions Heisenberg ferromagnet equation has the form
In 1 + 1, 2 + 1 and 3 + 1 dimensions this equation admits several integrable and non-integrable extensions like the Landau-Lifshitz equation, the Ishimori equation and so on. For a ferromagnet J > 0 and the ground state of the Hamiltonian is that in which all spins are aligned parallel with the field H. That is an eigenstate of can be verified by rewriting it in terms of the spin-raising and spin-lowering operators given by:
resulting in
where z has been taken as the direction of the magnetic field. The spin-lowering operator S− annihilates the state with minimum projection of spin along the z-axis, while the spin-raising operator S+ annihilates the ground state with maximum spin projection along the z-axis. Since
for the maximally aligned state, we find
where N is the total number of Bravais lattice sites. The proposition that the ground state is an eigenstate of the Hamiltonian is confirmed.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Spin is an intrinsic form of angular momentum carried by elementary particles, and thus by composite particles such as hadrons, atomic nuclei, and atoms. Spin should not be understood as in the "rotating internal mass" sense: spin is a quantized wave property. The existence of electron spin angular momentum is inferred from experiments, such as the Stern–Gerlach experiment, in which silver atoms were observed to possess two possible discrete angular momenta despite having no orbital angular momentum.
In physics, quasiparticles and collective excitations are closely related phenomena arising when a microscopically complicated system such as a solid behaves as if it contained different weakly interacting particles in vacuum. For example, as an electron travels through a semiconductor, its motion is disturbed in a complex way by its interactions with other electrons and with atomic nuclei. The electron behaves as though it has a different effective mass travelling unperturbed in vacuum.
In physics, a phonon is a collective excitation in a periodic, elastic arrangement of atoms or molecules in condensed matter, specifically in solids and some liquids. A type of quasiparticle, a phonon is an excited state in the quantum mechanical quantization of the modes of vibrations for elastic structures of interacting particles. Phonons can be thought of as quantized sound waves, similar to photons as quantized light waves. However, photons are fundamental particles that can be individually detected, whereas phonons, being quasiparticles, are an emergent phenomenon.
The course is conceived in the perspective of understanding the fundamentals of spintronics. This implies learning about magnetism at the quantum mechanical level, mechanisms for spin relaxation and
The aim of this course is to provide an introduction to the theory of a few remarkable phenomena of modern condensed matter physics ranging from the quantum Hall effects to superconductivity.
Ce cours de deux semestres donne une introduction à la Physique du solide, à la structure cristalline, aux vibrations du réseau, aux propriétés électroniques, de transport thermique et électrique ains
Two-dimensional (2D) hexagonal lattices of Cu disks are shown to induce orientation-dependent magnonic crystal (MC) modes for propagating forward volume spin waves in a single-crystal yttrium iron garnet (YIG) film. The width and depth of the magnonic band ...
2024
Tip-enhanced Raman spectroscopy (TERS) under ultrahigh vacuum and cryogenic conditions enables exploration of the relations between the adsorption geometry, electronic state, and vibrational fingerprints of individual molecules. TERS capability of reflecti ...
Magnonics is a research field that has gained an increasing interest in both the fundamental and applied sciences in recent years. This field aims to explore and functionalize collective spin excitations in magnetically ordered materials for modern informa ...