Impact of Local Electric Fields on Charge-Transfer Processes at the TiO2/Dye/Electrolyte Interface
Related publications (34)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Some redox-active ionic liquids, organic amorphous solids containing electron-donating moieties, and conductive polymers can efficiently transport positive electrical charges. These hole-conducting media find increasing applications in unconventional solar ...
Electrochemical impedance spectroscopy (EIS) and transient voltage decay measurements are applied to compare the performance of dye sensitized solar cells (DSCs) using organic electrolytes, ionic liquids and organic-hole conductors as hole transport materi ...
Nanocryst. particles of ZnO and TiO2 of approx. equal size (∼15 nm) were used to prep. mesoporous electrodes for dye-sensitized solar cells. Electron transport in the solar cells was studied using intensity-modulated photocurrent spectroscopy and revealed ...
In the context of the diminishing fossil energy resources and global warming, much research is focused on sustainable energy sources. The research that is presented in this thesis falls in this category as it contributes to the development of a device that ...
Dye-sensitized solar cells (DSC), introduced by O'Regan and Grätzel in 1991, are a low cost alternative to conventional silicon photovoltaic cells, the latter requiring extremely pure starting materials and sophisticated production procedures. DSC's, based ...
Using plastics or dyes like molecular semiconductors to make optoelectronic devices at low cost is a project in industry that is of great interest to the "Information Community" of this beginning of the 21st century. Some applications of this technology ha ...
Semiconductor films prepd. by electrostatic layer-by-layer deposition can be used to fabricate dye-sensitized solar cells after treatment at 150°. However, the resulting photocurrent is less than when the film is sintered at 500°. The difference in short-c ...
The dye-sensitized solar cell (DSC) challenges conventional photovoltaics with its potential for low-cost prodn. and its flexibility in terms of color and design. Transient absorption spectroscopy is widely used to unravel the working mechanism of DSCs. A ...
Power-conversion efficiencies of organic heterojunction solar cells can be increased by using semiconducting donor-acceptor materials with complementary absorption spectra extending to the near-infrared region. Here, we used continuous wave fluorescence an ...
The charge transport properties of the dye-sensitized solar cells consisting of Ru(dcbpyH2)2(NCS)2-sensitized nanostructured TiO2 with either redox electrolyte or CuSCN as hole conductor were compared. The electron transport time and the electron charge in ...