Synthesis and Physical Properties of 3d, 4d and 5d Transition Metal Compounds
Related publications (274)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This thesis presents combined experimental and theoretical investigations of nanoscale, surface-supported magnets based on rare earths (RE) to understand and control the magnetic properties down to the scale of single atoms. We present the effects of adato ...
Double perovskite oxides A(2)BB'O-6 combining 3d and 4d or 5d transition metal ions at the B and B' sites feature a variety of magnetic and magneto-electric properties. Targeting Ba2FeOsO6, we synthesized powder samples of nonstoichiometric Ba2Fe1.12Os0.88 ...
We report magnetic and thermodynamic properties of a 4d1 (Mo5+) magnetic insulator MoOPO4 single crystal, which realizes a J1−J2 Heisenberg spin-1/2 model on a stacked square lattice. The specific-heat measurements show a magnetic transition at 16 K which ...
In materials where electrons interact strongly, a number of exotic and exciting phenomena arise. The mechanisms at the base of many of these phenomena remain debated, as strongly correlated electron physics represents one of the biggest challenges for mode ...
Magnetic properties of AMoOPO4Cl (A=K,Rb) with Mo5+ ions in the 4d1 electronic configuration are investigated by magnetization, heat capacity, and nuclear magnetic resonance (NMR) measurements on single crystals, combined with powder neutron diffraction ex ...
Collective magnetic excitations are a fascinating aspect of condensed matter physics, where neutron scattering can provide valuable insight into the magnetic properties of physical realisations of model systems. This thesis focuses on the excitation spectr ...
We present a detailed study of the phase diagram of copper-intercalated TiSe2 single crystals, combining local Hall-probe magnetometry, tunnel diode oscillator technique (TDO), and specific-heat and angle-resolved photoemission spectroscopy measurements. A ...
This TPIV experiment deals with first measurements of CeAlSi and CeAlGe magnetic properties and allows to a comparison between these last two. The first step is a description of MPMS measurement, then the paramagnetism and ferromagnetism theory leads to an ...
Quantum Monte Carlo simulations provide one of the more powerful and versatile numerical approaches to condensed matter systems. However, their application to frustrated quantum spin models, in all relevant temperature regimes, is hamstrung by the infamous ...
Metals containing cerium exhibit a diverse range of fascinating phenomena including heavy fermion behavior, quantum criticality, and novel states of matter such as unconventional superconductivity. The cubic system CeIn3 has attracted significant attention ...