An improved set of guiding-centre equations, expanded to one order higher in Larmor radius than usually written for guiding-centre codes, are derived for curvilinear flux coordinates and implemented into the orbit following code VENUS-LEVIS. Aside from greatly improving the correspondence between guiding-centre and full particle trajectories, the most important effect of the additional Larmor radius corrections is to modify the definition of the guiding-centre's parallel velocity via the so-called Banos drift. The correct treatment of the guiding-centre push-forward with the Banos term leads to an anisotropic shift in the phase-space distribution of guiding-centres, consistent with the well-known magnetization term. The consequence of these higher order terms are quantified in three cases where energetic ions are usually followed with standard guiding-centre equations: (1) neutral beam injection in a MAST-like low aspect-ratio spherical equilibrium where the fast ion driven current is significantly larger with respect to previous calculations, (2) fast ion losses due to resonant magnetic perturbations where a lower lost fraction and a better confinement is confirmed, (3) alpha particles in the ripple field of the European DEMO where the effect is found to be marginal.
Jian Wang, Lesya Shchutska, Olivier Schneider, Yiming Li, Yi Zhang, Aurelio Bay, Guido Haefeli, Christoph Frei, Frédéric Blanc, Tatsuya Nakada, Michel De Cian, François Fleuret, Elena Graverini, Renato Quagliani, Federico Betti, Aravindhan Venkateswaran, Vitalii Lisovskyi, Sebastian Schulte, Veronica Sølund Kirsebom, Elisabeth Maria Niel, Ettore Zaffaroni, Mingkui Wang, Zhirui Xu, Chao Wang, Lei Zhang, Ho Ling Li, Mark Tobin, Minh Tâm Tran, Niko Neufeld, Matthew Needham, Maurizio Martinelli, Vladislav Balagura, Donal Patrick Hill, Liang Sun, Xiaoxue Han, Liupan An, Federico Leo Redi, Maxime Schubiger, Hang Yin, Violaine Bellée, Preema Rennee Pais, Pavol Stefko, Tara Nanut, Maria Elena Stramaglia, Yao Zhou, Tommaso Colombo, Vladimir Macko, Guillaume Max Pietrzyk, Evgenii Shmanin, Maxim Karpov, Simone Meloni, Xiaoqing Zhou, Surapat Ek-In, Carina Trippl, Sara Celani, Marco Guarise, Serhii Cholak, Dipanwita Dutta, Zheng Wang, Yong Yang, Yi Wang, Hao Liu, Hans Dijkstra, Gerhard Raven, Peter Clarke, Frédéric Teubert, Giovanni Carboni, Victor Coco, Shuai Liu, Adam Davis, Paolo Durante, Yu Zheng, Anton Petrov, Maxim Borisyak, Feng Jiang, Alexey Boldyrev, Almagul Kondybayeva, Hossein Afsharnia