Summary
The Wigner quasiprobability distribution (also called the Wigner function or the Wigner–Ville distribution, after Eugene Wigner and Jean-André Ville) is a quasiprobability distribution. It was introduced by Eugene Wigner in 1932 to study quantum corrections to classical statistical mechanics. The goal was to link the wavefunction that appears in Schrödinger's equation to a probability distribution in phase space. It is a generating function for all spatial autocorrelation functions of a given quantum-mechanical wavefunction ψ(x). Thus, it maps on the quantum density matrix in the map between real phase-space functions and Hermitian operators introduced by Hermann Weyl in 1927, in a context related to representation theory in mathematics (see Weyl quantization). In effect, it is the Wigner–Weyl transform of the density matrix, so the realization of that operator in phase space. It was later rederived by Jean Ville in 1948 as a quadratic (in signal) representation of the local time-frequency energy of a signal, effectively a spectrogram. In 1949, José Enrique Moyal, who had derived it independently, recognized it as the quantum moment-generating functional, and thus as the basis of an elegant encoding of all quantum expectation values, and hence quantum mechanics, in phase space (see Phase-space formulation). It has applications in statistical mechanics, quantum chemistry, quantum optics, classical optics and signal analysis in diverse fields, such as electrical engineering, seismology, time–frequency analysis for music signals, spectrograms in biology and speech processing, and engine design. A classical particle has a definite position and momentum, and hence it is represented by a point in phase space. Given a collection (ensemble) of particles, the probability of finding a particle at a certain position in phase space is specified by a probability distribution, the Liouville density. This strict interpretation fails for a quantum particle, due to the uncertainty principle.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
PHYS-453: Quantum electrodynamics and quantum optics
This course on one hand develops the quantum theory of electromagnetic radiation from the principles of quantum electrodynamics. It will cover basis historic developments (coherent states, squeezed st
CH-453: Molecular quantum dynamics
The course covers several exact, approximate, and numerical methods to solve the time-dependent molecular Schrödinger equation, and applications including calculations of molecular electronic spectra.
Related lectures (32)
Quantum Metrology: Spin-Squeezing and Interferometry
Explores spin-squeezing in quantum metrology, focusing on interferometry beyond the standard limit and applications in precision measurements.
Modes and states in quantum optics
Explores the fundamental concepts of modes and states in quantum optics, covering topics such as optical frequency combs, homodyne detection, and quantum resource like squeezed states.
Quantum Dynamics: Exact Methods and Applications
Covers exact and semiclassical quantum dynamics, including Schrödinger's equation and molecular interactions.
Show more
Related publications (65)

Thermal conductivity of glasses: first-principles theory and applications

Nicola Marzari, Michele Simoncelli

Predicting the thermal conductivity of glasses from first principles has hitherto been a very complex problem. The established Allen-Feldman and Green-Kubo approaches employ approximations with limited validity-the former neglects anharmonicity, the latter ...
NATURE PORTFOLIO2023

The Allen-Cahn equation with generic initial datum

Martin Hairer

We consider the Allen-Cahn equation ?(t)u - ?u = u - u(3) with a rapidly mixing Gaussian field as initial condition. We show that provided that the amplitude of the initial condition is not too large, the equation generates fronts described by nodal sets o ...
SPRINGER HEIDELBERG2023

Nonlinear inviscid damping and shear-buoyancy instability in the two-dimensional Boussinesq equations

Michele Dolce

We investigate the long-time properties of the two-dimensional inviscid Boussinesq equations near a stably stratified Couette flow, for an initial Gevrey perturbation of size & epsilon;. Under the classical Miles-Howard stability condition on the Richardso ...
WILEY2023
Show more
Related concepts (19)
Phase-space formulation
The phase-space formulation of quantum mechanics places the position and momentum variables on equal footing in phase space. In contrast, the Schrödinger picture uses the position or momentum representations (see also position and momentum space). The two key features of the phase-space formulation are that the quantum state is described by a quasiprobability distribution (instead of a wave function, state vector, or density matrix) and operator multiplication is replaced by a star product.
Squeezed coherent state
In physics, a squeezed coherent state is a quantum state that is usually described by two non-commuting observables having continuous spectra of eigenvalues. Examples are position and momentum of a particle, and the (dimension-less) electric field in the amplitude (phase 0) and in the mode (phase 90°) of a light wave (the wave's quadratures). The product of the standard deviations of two such operators obeys the uncertainty principle: and , respectively.
Coherent state
In physics, specifically in quantum mechanics, a coherent state is the specific quantum state of the quantum harmonic oscillator, often described as a state which has dynamics most closely resembling the oscillatory behavior of a classical harmonic oscillator. It was the first example of quantum dynamics when Erwin Schrödinger derived it in 1926, while searching for solutions of the Schrödinger equation that satisfy the correspondence principle.
Show more