Size effect on punching shear strength: differences and analogies with shear in one-way slabs
Related publications (144)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Aggregate interlocking is a phenomenon occurring when the opposite sides of a concrete crack slide relative to each other. Due to surface roughness, protruding material from one crack-side can engage with the opposite one and thus exchange forces. This aff ...
Aggregate interlocking is acknowledged as one of the most significant actions transferring shear forces in cracked concrete structures and has been investigated for several decades. Despite the many experimental programmes and previous efforts to develop m ...
Pure magnesium (Mg) is an attractive metal for structural applications due to its low density, but also has low ductility and low fracture toughness. Dilute alloying of Mg with rare earth elements in small amounts improves the ductility, but the effects of ...
Aggregate interlock is the mechanism via which normal and shear stresses are transferred across the lips of cracks in concrete . The fractal property of cracking surfaces in concrete plays a significant role in shear transfer across surfaces. Because of th ...
To explore connections between rock strength and rock falls, we undertook a comprehensive rock mechanics testing program for six granitic rock types in Yosemite Valley (California, USA) where rock falls are a common geomorphic and sometimes hazardous proce ...
Sustained load actions are permanently present in concrete structures, as for example self-weight and dead loads on bridges or soil pressure on cut-and-cover tunnels. These actions may increase throughout a structure's lifetime, for instance after refurbis ...
Porous brittle solids have the ability to collapse and fail even under compressive stresses. In fracture mechanics, this singular behavior, often referred to as anticrack, demands for appropriate continuum models to predict the catastrophic failure. To ide ...
While we fundamentally understand the dynamics of simple cracks propagating in brittle solids within perfect (homogeneous) materials, we do not understand how paths of moving cracks are determined. We experimentally study strongly perturbed cracks that pro ...
The Opalinus Clay shale formation is considered as a potential host geomaterial for the Swiss deep geological repository for radioactive waste. It presents different facies and it is characterised by a multi-scale heterogeneous composition, by a typical fi ...
Understanding the behaviour of soil-structure interfaces is critical for addressing the analysis and design of energy geostructures. In this study, the interface failure mechanism of energy piles (where a shear band is detached from the surrounding soil th ...