Hilbert's NullstellensatzIn mathematics, Hilbert's Nullstellensatz (German for "theorem of zeros", or more literally, "zero-locus-theorem") is a theorem that establishes a fundamental relationship between geometry and algebra. This relationship is the basis of algebraic geometry. It relates algebraic sets to ideals in polynomial rings over algebraically closed fields. This relationship was discovered by David Hilbert, who proved the Nullstellensatz in his second major paper on invariant theory in 1893 (following his seminal 1890 paper in which he proved Hilbert's basis theorem).
Nielsen transformationIn mathematics, especially in the area of abstract algebra known as combinatorial group theory, Nielsen transformations, named after Jakob Nielsen, are certain automorphisms of a free group which are a non-commutative analogue of row reduction and one of the main tools used in studying free groups, . They were introduced in to prove that every subgroup of a free group is free (the Nielsen–Schreier theorem), but are now used in a variety of mathematics, including computational group theory, k-theory, and knot theory.
ToposIn mathematics, a topos (USˈtɒpɒs, UKˈtoʊpoʊs,_ˈtoʊpɒs; plural topoi ˈtɒpɔɪ or ˈtoʊpɔɪ, or toposes) is a that behaves like the category of sheaves of sets on a topological space (or more generally: on a site). Topoi behave much like the and possess a notion of localization; they are a direct generalization of point-set topology. The Grothendieck topoi find applications in algebraic geometry; the more general elementary topoi are used in logic. The mathematical field that studies topoi is called topos theory.
Noether normalization lemmaIn mathematics, the Noether normalization lemma is a result of commutative algebra, introduced by Emmy Noether in 1926. It states that for any field k, and any finitely generated commutative k-algebra A, there exist algebraically independent elements y1, y2, ..., yd in A such that A is a finitely generated module over the polynomial ring S = k [y1, y2, ..., yd]. The integer d is equal to the Krull dimension of the ring A; and if A is an integral domain, d is also the transcendence degree of the field of fractions of A over k.
Word (group theory)In group theory, a word is any written product of group elements and their inverses. For example, if x, y and z are elements of a group G, then xy, z−1xzz and y−1zxx−1yz−1 are words in the set {x, y, z}. Two different words may evaluate to the same value in G, or even in every group. Words play an important role in the theory of free groups and presentations, and are central objects of study in combinatorial group theory. Let G be a group, and let S be a subset of G. A word in S is any expression of the form where s1,.