Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We present the design and implementation of a SQL query processor that outperforms existing database systems and is written in just about 500 lines of Scala code – a convincing case study that high-level functional programming can handily beat C for systems-level programming where the last drop of performance matters. The key enabler is a shift in perspective towards generative programming. The core of the query engine is an interpreter for relational algebra operations, written in Scala. Using the open-source LMS Framework (Lightweight Modular Staging), we turn this interpreter into a query compiler with very low effort. To do so, we capitalize on an old and widely known result from partial evaluation known as Futamura projections, which state that a program that can specialize an interpreter to any given input program is equivalent to a compiler. In this pearl, we discuss LMS programming patterns such as mixed-stage data structures (e.g. data records with static schema and dynamic field components) and techniques to generate low-level C code, including specialized data structures and data loading primitives.
Martin Odersky, Olivier Eric Paul Blanvillain
, , , ,
, ,