Mimetic scalar products of discrete differential forms
Related publications (101)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
A stabilized semidiscrete finite element discretization of the transient transport equation is studied in the framework of anisotropic meshes. A priori and a posteriori error estimates are derived, the involved constants being independent of the mesh aspec ...
In this paper, we consider the numerical approximation of high order Partial Differential Equations (PDEs) by means of NURBS-based Isogeometric Analysis (IGA) in the framework of the Galerkin method, for which global smooth basis functions with degree of c ...
In this project report, we first present the application of the finite elements method to the numerical approximation of elliptic and parabolic PDEs over two-dimensional domains. We then consider the theory and numerical approximation of optimal control pr ...
Prof Bierlaire will present the powerful methods of Discrete Choice Analysis that are used in forecasting human behaviour to predict, among others, the demand for a new product under alternative pricing strategies. From individual behaviors, such technique ...
In this paper we present a compact review on the mostly used techniques for computational reduction in numerical approximation of partial differential equations. We highlight the common features of these techniques and provide a detailed presentation of th ...
Isogeometric analysis (IGA) is a computational methodology recently developed to numerically approximate Partial Differential Equation (PDEs). It is based on the isogeometric paradigm, for which the same basis functions used to represent the geometry are t ...
The aim of this work is the development of a geometrical multiscale framework for the simulation of the human cardiovascular system under either physiological or pathological conditions. More precisely, we devise numerical algorithms for the partitioned so ...
We consider elliptic PDEs (partial differential equations) in the framework of isogeometric analysis, i.e., we treat the physical domain by means of a B-spline or NURBS mapping which we assume to be regular. The numerical solution of the PDE is computed by ...
In this work we propose and analyze a weighted reduced basis method to solve elliptic partial differential equations (PDEs) with random input data. The PDEs are first transformed into a weighted parametric elliptic problem depending on a finite number of p ...
In this thesis we study the efficient implementation of the finite element method for the numerical solution of partial differential equations (PDE) on modern parallel computer archi- tectures, such as Cray and IBM supercomputers. The domain-decomposition ...