Publication

Competitive ion-exchange of manganese and gadolinium in titanate nanotubes

Abstract

Homogeneous Mn2+ and Gd3+ intercalation of scroll-type trititanate nanotubes using a post-synthesis ion exchange method is reported. Compared to Mn2+, Gd3+ ion-exchange shows larger saturation intercalation levels. Upon co-doping, weak interactions between the dopant ions were found to modify the incorporated concentrations. Electron spin resonance (ESR) measurements, performed at several frequencies, confirmed the homogeneous distribution of Mn2+ and Gd3+. Detailed simulation of ESR spectra identified a large spread of the local structural distortions of the occupied sites as a result of a wide range of curvature radii of the titanate nanotubes. (C) 2016 Elsevier B.V. All rights reserved.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.