In nuclear physics and particle physics, the weak interaction, which is also often called the weak force or weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction, and gravitation. It is the mechanism of interaction between subatomic particles that is responsible for the radioactive decay of atoms: The weak interaction participates in nuclear fission and nuclear fusion. The theory describing its behaviour and effects is sometimes called quantum flavourdynamics (QFD); however, the term QFD is rarely used, because the weak force is better understood by electroweak theory (EWT).
The effective range of the weak force is limited to subatomic distances and is less than the diameter of a proton.
The Standard Model of particle physics provides a uniform framework for understanding electromagnetic, weak, and strong interactions. An interaction occurs when two particles (typically, but not necessarily, half-integer spin fermions) exchange integer-spin, force-carrying bosons. The fermions involved in such exchanges can be either elementary (e.g. electrons or quarks) or composite (e.g. protons or neutrons), although at the deepest levels, all weak interactions ultimately are between elementary particles.
In the weak interaction, fermions can exchange three types of force carriers, namely W^+, W^−, and Z bosons. The masses of these bosons are far greater than the mass of a proton or neutron, which is consistent with the short range of the weak force. In fact, the force is termed weak because its field strength over any set distance is typically several orders of magnitude less than that of the electromagnetic force, which itself is further orders of magnitude less than the strong nuclear force.
The weak interaction is the only fundamental interaction that breaks parity symmetry, and similarly, but far more rarely, the only interaction to break charge–parity symmetry.