Pure spinorIn the domain of mathematics known as representation theory, pure spinors (or simple spinors) are spinors that are annihilated under the Clifford action by a maximal isotropic subspace of the space of vectors with respect to the scalar product determining the Clifford algebra. They were introduced by Élie Cartan in the 1930s to classify complex structures. Pure spinors were a key ingredient in the study of spin geometry and twistor theory, introduced by Roger Penrose in the 1960s.
Field (mathematics)In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers.
Central simple algebraIn ring theory and related areas of mathematics a central simple algebra (CSA) over a field K is a finite-dimensional associative K-algebra A which is simple, and for which the center is exactly K. (Note that not every simple algebra is a central simple algebra over its center: for instance, if K is a field of characteristic 0, then the Weyl algebra is a simple algebra with center K, but is not a central simple algebra over K as it has infinite dimension as a K-module.
Rank of an abelian groupIn mathematics, the rank, Prüfer rank, or torsion-free rank of an abelian group A is the cardinality of a maximal linearly independent subset. The rank of A determines the size of the largest free abelian group contained in A. If A is torsion-free then it embeds into a vector space over the rational numbers of dimension rank A. For finitely generated abelian groups, rank is a strong invariant and every such group is determined up to isomorphism by its rank and torsion subgroup.
Wreath productIn group theory, the wreath product is a special combination of two groups based on the semidirect product. It is formed by the action of one group on many copies of another group, somewhat analogous to exponentiation. Wreath products are used in the classification of permutation groups and also provide a way of constructing interesting examples of groups. Given two groups and (sometimes known as the bottom and top), there exist two variations of the wreath product: the unrestricted wreath product and the restricted wreath product .
Clifford moduleIn mathematics, a Clifford module is a representation of a Clifford algebra. In general a Clifford algebra C is a central simple algebra over some field extension L of the field K over which the quadratic form Q defining C is defined. The abstract theory of Clifford modules was founded by a paper of M. F. Atiyah, R. Bott and Arnold S. Shapiro. A fundamental result on Clifford modules is that the Morita equivalence class of a Clifford algebra (the equivalence class of the category of Clifford modules over it) depends only on the signature p − q (mod 8).