Non-local Functionals Related to the Total Variation and Connections with Image Processing
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We consider the problem of finding a saddle point for the convex-concave objective minxmaxyf(x)+⟨Ax,y⟩−g∗(y), where f is a convex function with locally Lipschitz gradient and g is convex and possibly non-smooth. We propose an ...
Non-convex constrained optimization problems have become a powerful framework for modeling a wide range of machine learning problems, with applications in k-means clustering, large- scale semidefinite programs (SDPs), and various other tasks. As the perfor ...
There is an increasing interest in a fast-growing machine learning technique called Federated Learning (FL), in which the model training is distributed over mobile user equipment (UEs), exploiting UEs' local computation and training data. Despite its advan ...
We consider the problem of non-negative super-resolution, which concerns reconstructing a non-negative signal x = Sigma(k )(i=1)a(i)delta(ti) from m samples of its convolution with a window function phi(s - t), of the form y(s(j)) = Sigma(k)(i=1) a(i) phi( ...
We propose a method for sensor array self-localization using a set of sources at unknown locations. The sources produce signals whose times of arrival are registered at the sensors. We look at the general case where neither the emission times of the source ...
We study the asymptotic behavior of the N-clock model, a nearest neighbors ferromagnetic spin model on the d-dimensional cubic epsilon-lattice in which the spin field is constrained to take values in a discretization S-N of the unit circle S-1 consisting o ...
This paper introduces a new algorithm for consensus optimization in a multi-agent network, where all agents collaboratively find a minimizer for the sum of their private functions. All decentralized algorithms rely on communications between adjacent nodes. ...
This work studies multi-agent sharing optimization problems with the objective function being the sum of smooth local functions plus a convex (possibly non-smooth) function coupling all agents. This scenario arises in many machine learning and engineering ...
This paper analyzes the trajectories of stochastic gradient descent (SGD) to help understand the algorithm’s convergence properties in non-convex problems. We first show that the sequence of iterates generated by SGD remains bounded and converges with prob ...
We present a strikingly simple proof that two rules are sufficient to automate gradient descent: 1) don’t increase the stepsize too fast and 2) don’t overstep the local curvature. No need for functional values, no line search, no information about the func ...