Hydrogen vehicleA hydrogen vehicle is a vehicle that uses hydrogen fuel for motive power. Hydrogen vehicles include hydrogen-fueled space rockets, as well as ships and aircraft. Power is generated by converting the chemical energy of hydrogen to mechanical energy, either by reacting hydrogen with oxygen in a fuel cell to power electric motors or, less commonly, by burning hydrogen in an internal combustion engine. there are two models of hydrogen cars publicly available in select markets: the Toyota Mirai (2014–), which is the world's first mass-produced dedicated fuel cell electric vehicle (FCEV), and the Hyundai Nexo (2018–).
Concentrated solar powerConcentrated solar power (CSP, also known as concentrating solar power, concentrated solar thermal) systems generate solar power by using mirrors or lenses to concentrate a large area of sunlight into a receiver. Electricity is generated when the concentrated light is converted to heat (solar thermal energy), which drives a heat engine (usually a steam turbine) connected to an electrical power generator or powers a thermochemical reaction. As of 2021, global installed capacity of concentrated solar power stood at 6.
Hydrogen technologiesHydrogen technologies are technologies that relate to the production and use of hydrogen as a part hydrogen economy. Hydrogen technologies are applicable for many uses. Some hydrogen technologies are carbon neutral and could have a role in preventing climate change and a possible future hydrogen economy. Hydrogen is a chemical widely used in various applications including ammonia production, oil refining and energy. The most common methods for producing hydrogen on an industrial scale are: Steam reforming, oil reforming, coal gasification, water electrolysis.
Fermentative hydrogen productionFermentative hydrogen production is the fermentative conversion of organic substrates to H2. Hydrogen produced in this manner is often called biohydrogen. The conversion is effected by bacteria and protozoa, which employ enzymes. Fermentative hydrogen production is one of several anaerobic conversions. Dark fermentation reactions do not require light energy. These are capable of constantly producing hydrogen from organic compounds throughout the day and night. Typically these reactions are coupled to the formation of carbon dioxide or formate.
Solar fuelA solar fuel is a synthetic chemical fuel produced from solar energy. Solar fuels can be produced through photochemical (i.e. activation of certain chemical reactions by photons), photobiological (i.e., artificial photosynthesis), and electrochemical reactions (i.e. using the electricity from solar panels to drive a chemical reaction). Solar fuels can also be produced by thermochemical reactions (i.e., through the use of solar heat supplied by concentrated solar thermal energy to drive a chemical reaction).
Thermochemical cycleThermochemical cycles combine solely heat sources (thermo) with chemical reactions to split water into its hydrogen and oxygen components. The term cycle is used because aside of water, hydrogen and oxygen, the chemical compounds used in these processes are continuously recycled. If work is partially used as an input, the resulting thermochemical cycle is defined as a hybrid one. This concept was first postulated by Funk and Reinstrom (1966) as a maximally efficient way to produce fuels (e.g.
Metallic hydrogenMetallic hydrogen is a phase of hydrogen in which it behaves like an electrical conductor. This phase was predicted in 1935 on theoretical grounds by Eugene Wigner and Hillard Bell Huntington. At high pressure and temperatures, metallic hydrogen can exist as a partial liquid rather than a solid, and researchers think it might be present in large quantities in the hot and gravitationally compressed interiors of Jupiter and Saturn, as well as in some exoplanets.
WüstiteWüstite (FeO) is a mineral form of iron(II) oxide found with meteorites and native iron. It has a grey colour with a greenish tint in reflected light. Wüstite crystallizes in the isometric-hexoctahedral crystal system in opaque to translucent metallic grains. It has a Mohs hardness of 5 to 5.5 and a specific gravity of 5.88. Wüstite is a typical example of a non-stoichiometric compound. Wüstite was named after Fritz Wüst (1860–1938), a German metallurgist and founding director of the Kaiser-Wilhelm-Institut für Eisenforschung (presently Max Planck Institute for Iron Research GmbH).
TaconiteTaconite (ˈtækənaɪt) is a variety of banded iron formation, an iron-bearing (over 15% iron) sedimentary rock, in which the iron minerals are interlayered with quartz, chert, or carbonate. The name "taconyte" was coined by Horace Vaughn Winchell (1865–1923) – son of Newton Horace Winchell, the Minnesota State Geologist – during their pioneering investigations of the Precambrian Biwabik Iron Formation of northeastern Minnesota.
Photoelectrolysis of waterPhotoelectrolysis of water, also known as photoelectrochemical water splitting, occurs in a photoelectrochemical cell when light is used as the energy source for the electrolysis of water, producing dihydrogen which can be used as a fuel. This process is one route to a "hydrogen economy", in which hydrogen fuel is produced efficiently and inexpensively from natural sources without using fossil fuels. In contrast, steam reforming usually or always uses a fossil fuel to obtain hydrogen.