Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We study a natural generalization of the problem of minimizing makespan on unrelated machines in which jobs may be split into parts. The different parts of a job can be (simultaneously) processed on different machines, but each part requires a setup time before it can be processed. First we show that a natural adaptation of the seminal approximation algorithm for unrelated machine scheduling [11] yields a 3-approximation algorithm, equal to the integrality gap of the corresponding LP relaxation. Through a stronger LP relaxation, obtained by applying a lift-and-project procedure, we are able to improve both the integrality gap and the implied approximation factor to 1 + φ, where φ ≈ 1.618 is the golden ratio. This ratio decreases to 2 in the restricted assignment setting, matching the result for the classic version. Interestingly, we show that our problem cannot be approximated within a factor better than e/e-1 ≈ 1.582 (unless P = NP). This provides some evidence that it is harder than the classic version, which is only known to be inapproximable within a factor 1.5 - ε. Since our 1 + φ bound remains tight when considering the seemingly stronger machine configuration LP, we propose a new job based configuration LP that has an infinite number of variables, one for each possible way a job may be split and processed on the machines. Using convex duality we show that this infinite LP has a finite representation and can be solved in polynomial time to any accuracy, rendering it a promising relaxation for obtaining better algorithms. © 2014 Springer International Publishing Switzerland.
Friedrich Eisenbrand, Moritz Andreas Venzin, Jana Tabea Cslovjecsek