Publication

Analysis of functional groups in atmospheric aerosols by infrared spectroscopy: ElnetPLS model for statistical selection of relevant absorption bands for OC predictions

Abstract

Organic carbon (OC) is a major component of atmospheric particulate matter (PM). Typically OC concentrations are measured using thermal methods such as thermal-optical reflectance (TOR) from samples collected on quartz filters. However, TOR measurements are destructive and expensive. We estimate TOR OC concentrations using Fourier transform infrared (FT-IR) spectra of ambient samples collected on Teflon filter. We have developed a sparse statistical calibration model (ElnetPLS), which excludes unnecessary wavenumbers from infrared spectra during the model building process, permitting the identification and evaluation of the most relevant vibrational modes of molecules in complex aerosol mixtures associated with reported TOR OC concentrations. The sparsest ElnetPLS model has similar model performances of the full (2784) wavenumber models while requiring only ten wavenumbers associated with carbonyl groups.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.