Hydrodynamics of mountain-river confluences and its relationship to sediment transport
Related publications (128)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In computational hydraulics models, predicting bed topography and bedload transport with sufficient accuracy remains a significant challenge. An accurate assessment of a river's sediment transport rate necessitates a prior understanding of its bed topograp ...
Field surveys and laboratory experiments show that bedload transport rates may vary to within one order of magnitude for a given water discharge. One of today's major challenges is to account for these large transport rate fluctuations in computational hyd ...
River bars often form at river confluences due to variation in flow discharges or in sediment transport capacity; once these bars are grown, they constitute favourable habitats for vegetation development. In this work, we analysed the effect of vegetation ...
Aeolian transport controls landform formations on Earth and other planets and crucially affects the atmospheric system. With elaborate wind tunnel measurements, we find that the aerodynamic entrainment rate follows a yet unreported exponential increase in ...
Sediment deposition and bank accretion are promoted by the establishment and growth of pioneer plant species, a direct consequence of plant survival during flood events. Similarly, the uprooting of riparian vegetation on river bars during floods can subseq ...
Bridge failure, due to local scour at bridge pier foundations, has become a critical issue in river and bridge engineering, which might lead to transportation disruption, loss of lives and economic problems. A practical solution to prevent bridge collapses ...
Bedload transport is one of the main mechanisms for sediment transport in rivers. Bedload transport may exhibit anomalous dispersion behavior during the formation of clusters on the surface of a heterogeneous river bed, which cannot be quantified by the cl ...
Hyporheic exchange is affected by bedform geometry, which induces complex flow paths within the bedform. Additional factors that influence flow and solute transport in the hyporheic zone are layered profile sediments and density-driven flow. This study exp ...
Glacial erosion processes shape the Earth’s surface. Nevertheless, the processes that drive glacial erosion and the subsequent export of sediments are poorly understood and quantified. These processes include ice sliding, which controls erosion by abrasion ...
In mountain regions, steep streams play an important role in water and sediment connectivity. In these highly dynamic systems, water flow features, sediment fluxes and stream morphologies are tightly interlinked over a broad range of temporal and spatial s ...