Impact of material properties on caprock stability in CO2 geological storage
Related publications (37)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Geologic CO2 sequestration is considered to be the most promising technique to reduce the concentration of greenhouse gases in the atmosphere. Among all the storage options, deep saline aquifers have the greatest potential and due to their worldwide occurr ...
Deep saline aquifers have a great potential for geologic carbon dioxide (CO2) sequestration and proper assessment of host and cap rock is needed to guarantee that the procedure is safe. Temperatures and pressures at which most of the possible host rocks ex ...
Structural components used in civil engineering applications are often subjected to compressive loads. Unlike the tensile strength of fiber-reinforced polymer (FRP) materials, their compressive strength is resin-dominated, exhibiting lower values and more ...
Among the different ways of capturing carbon dioxide in industrial processes, chemical looping process is presented as an improvement in oxy-fuel combustion. Since carbon dioxide is directly generated with water in the process, there is no need of an addit ...
Carbon Capture and Sequestration (CCS) is one of the promising ways to significantly reduce the CO2 emission from power plants. In particular, amongst several separation strategies, adsorption by nano-porous materials is regarded as a potential means to ef ...
Thermal effects are an important component in the analysis of geologic carbon storage because the injected CO2 reaches the storage formation at a lower temperature than that of the reservoir rock. The main fear is related to the possibility that the shear ...
The overall aim of this thesis has been to assess the potential of latex-based technologies for the preparation of polymer/clay nanocomposites. The key feature of latex-based technologies is that they offer the possibility of improved control of the final ...
Removal of carbon dioxide is an essential step in many energy-related processes. Here we report a novel slurry concept that combines specific advantages of metal-organic frameworks, ion liquids, amines and membranes by suspending zeolitic imidazolate frame ...
CO2 storage in deep aquifers is considered as a potential technology to reduce the greenhouse effects of CO2. Practically, a large-volume (>1 Mt/year) of CO2 could be injected into a system that consists of a highly porous host aquifer covered by a low-per ...
Carbon dioxide (CO2) geological storage relies on safe, long-term injection of large quantities of CO2 in underground porous rocks. Wells, whether they are the conduit of the pumped fluid or are exposed to CO2 in the storage reservoir (observation and old ...