Neuromorphic System with Phase-Change Synapses for Pattern Learning and Feature Extraction
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Our brain continuously self-organizes to construct and maintain an internal representation of the world based on the information arriving through sensory stimuli. Remarkably, cortical areas related to different sensory modalities appear to share the same f ...
— A novel neuron circuit using a Cu/Ti/Al2O3-based conductive-bridge random access memory (CBRAM) device for hardware neural networks that utilize nonvolatile memories as synaptic weights is introduced. The neuronal operations are designed and proved using ...
Institute of Electrical and Electronics Engineers2016
Recent experimental data from the rodent cerebral cortex and olfactory bulb indicate that specific connectivity motifs are correlated with short-term dynamics of excitatory synaptic transmission. It was observed that neurons with short-term facilitating sy ...
Neuronal firing, synaptic transmission, and its plasticity form the building blocks for processing and storage of information in the brain. It is unknown whether adult human synapses are more efficient in transferring information between neurons than roden ...
We derive a plausible learning rule updating the synaptic efficacies for feedforward, feedback and lateral connections between observed and latent neurons. Operating in the context of a generative model for distributions of spike sequences, the learning me ...
How do animals learn to repeat behaviors that lead to the obtention of food or other “rewarding” objects? As a biologically plausible paradigm for learning in spiking neural networks, spike-timing dependent plasticity (STDP) has been shown to perform well ...
Computational neuroscience is dominated by a few paradigmatic models, but it remains an open question whether the existing modelling frameworks are sufficient to explain observed behavioural phenomena in terms of neural implementation. We take learning and ...
Random networks of integrate-and-fire neurons with strong current-based synapse scan, unlike previously believed, assume stable states of sustained asynchronous and irregular firing, even without external random background or pacemaker neurons. We analyze ...
Climbing fiber (CF) triggered complex spikes (CS) are massive depolarization bursts in the cerebellar Purkinje cell (PC), showing several high frequency spikelet components (+/- 600 Hz). Since its early observations, the CS is known to vary in shape. In th ...
Animals repeat rewarded behaviors, but the physiological basis of reward-based learning has only been partially elucidated. On one hand, experimental evidence shows that the neuromodulator dopamine carries information about rewards and affects synaptic pla ...