Dynamical Low Rank approximation of PDEs with random parameters
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
While reduced-order models (ROMs) are popular for approximately solving large systems of differential equations, the stability of reduced models over long-time integration remains an open question. We present a greedy approach for ROM generation of paramet ...
We consider finite element error approximations of the steady incompressible Navier-Stokes equations defined on a randomly perturbed domain, the perturbation being small. Introducing a random mapping, these equations are transformed into PDEs on a fixed re ...
In this work, we study the blood flow dynamics in idealized left ventricles (LV) of the human heart modelled by the Navier-Stokes equations with mixed time varying boundary conditions. The latter are introduced for simulating the functioning of the aortic ...
In this paper we give a survey on various multiscale methods for the numerical solution of second order hyperbolic equations in highly heterogenous media. We concentrate on the wave equation and distinguish between two classes of applications. First we dis ...
In this paper, we introduce the hierarchical B-spline complex of discrete differential forms for arbitrary spatial dimension. This complex may be applied to the adaptive isogeometric solution of problems arising in fluid mechanics. We derive a sufficient a ...
We consider the initial value problem for the inviscid Primitive and Boussinesq equations in three spatial dimensions. We recast both systems as an abstract Eulertype system and apply the methods of convex integration of De Lellis and Székelyhidi to show t ...
We consider the initial value problem for the inviscid Primitive and Boussinesq equations in three spatial dimensions. We recast both systems as an abstract Euler-type system and apply the methods of convex integration of De Lellis and Sz,kelyhidi to show ...
We use the averaged variational principle introduced in a recent article on graph spectra [10] to obtain upper bounds for sums of eigenvalues of several partial differential operators of interest in geometric analysis, which are analogues of Kroger's bound ...
We give a generalization of toric symplectic geometry to Poisson manifolds which are symplectic away from a collection of hypersurfaces forming a normal crossing configuration. We introduce the tropical momentum map, which takes values in a generalization ...
In the strong scaling limit, the performance of conventional spatial domain decomposition techniques for the parallel solution of PDEs saturates. When sub-domains become small, halo-communication and other overheard come to dominate. A potential path beyon ...