Concurrency controlIn information technology and computer science, especially in the fields of computer programming, operating systems, multiprocessors, and databases, concurrency control ensures that correct results for concurrent operations are generated, while getting those results as quickly as possible. Computer systems, both software and hardware, consist of modules, or components. Each component is designed to operate correctly, i.e., to obey or to meet certain consistency rules.
Commitment orderingCommitment ordering (CO) is a class of interoperable serializability techniques in concurrency control of databases, transaction processing, and related applications. It allows optimistic (non-blocking) implementations. With the proliferation of multi-core processors, CO has also been increasingly utilized in concurrent programming, transactional memory, and software transactional memory (STM) to achieve serializability optimistically. CO is also the name of the resulting transaction schedule (history) property, defined in 1988 with the name dynamic atomicity.
Database transactionA database transaction symbolizes a unit of work, performed within a database management system (or similar system) against a database, that is treated in a coherent and reliable way independent of other transactions. A transaction generally represents any change in a database. Transactions in a database environment have two main purposes: To provide reliable units of work that allow correct recovery from failures and keep a database consistent even in cases of system failure.
Schedule (computer science)In the fields of databases and transaction processing (transaction management), a schedule (or history) of a system is an abstract model to describe execution of transactions running in the system. Often it is a list of operations (actions) ordered by time, performed by a set of transactions that are executed together in the system. If the order in time between certain operations is not determined by the system, then a partial order is used.
Timestamp-based concurrency controlIn computer science, a timestamp-based concurrency control algorithm is a non-lock concurrency control method. It is used in some databases to safely handle transactions, using timestamps. Every timestamp value is unique and accurately represents an instant in time. A higher-valued timestamp occurs later in time than a lower-valued timestamp. A number of different ways have been used to generate timestamp Use the value of the system's clock at the start of a transaction as the timestamp.
Global serializabilityIn concurrency control of databases, transaction processing (transaction management), and other transactional distributed applications, global serializability (or modular serializability) is a property of a global schedule of transactions. A global schedule is the unified schedule of all the individual database (and other transactional object) schedules in a multidatabase environment (e.g., federated database).
Multiversion concurrency controlMultiversion concurrency control (MCC or MVCC), is a concurrency control method commonly used by database management systems to provide concurrent access to the database and in programming languages to implement transactional memory. Without concurrency control, if someone is reading from a database at the same time as someone else is writing to it, it is possible that the reader will see a half-written or inconsistent piece of data.
Distributed transactionA distributed transaction is a database transaction in which two or more network hosts are involved. Usually, hosts provide transactional resources, while the transaction manager is responsible for creating and managing a global transaction that encompasses all operations against such resources. Distributed transactions, as any other transactions, must have all four ACID (atomicity, consistency, isolation, durability) properties, where atomicity guarantees all-or-nothing outcomes for the unit of work (operations bundle).
Snapshot isolationIn databases, and transaction processing (transaction management), snapshot isolation is a guarantee that all reads made in a transaction will see a consistent snapshot of the database (in practice it reads the last committed values that existed at the time it started), and the transaction itself will successfully commit only if no updates it has made conflict with any concurrent updates made since that snapshot.
Isolation (database systems)In database systems, isolation determines how transaction integrity is visible to other users and systems. A lower isolation level increases the ability of many users to access the same data at the same time, but increases the number of concurrency effects (such as dirty reads or lost updates) users might encounter. Conversely, a higher isolation level reduces the types of concurrency effects that users may encounter, but requires more system resources and increases the chances that one transaction will block another.