Formic Acid as a Hydrogen Carrier for Fuel Cells Toward a Sustainable Energy System
Related publications (201)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Hydrogen fuel cells are an essential component of hydrogen economy, which have been advocated as a major path towards the decarbonization of the energy sector. Within the two main types of low-temperature hydrogen fuel cells, anion-exchange membrane fuel c ...
A strategic roadmap for noncarbonized fuels is a global priority, and the reduction of carbon dioxide emissions is a key focus of the Paris Agreement to mitigate the effects of rising temperatures. In this context, hydrogen is a promising noncarbonized fue ...
Hydrogen (H-2) has been widely considered the clean energy carrier of choice for emerging renewable energy generation technologies. However, H-2 is a secondary fuel mainly derived from natural gas. Over the past decades, research on developing H-2 producti ...
Energy conversion through sustainable means is essential to counter global warming and an urgent solution through a multidisciplinary approach is required. The temperature change stems from the emission of greenhouse gases largely contributed by burning fo ...
The black liquor gasification integrated to chemical plants has shown potential for reducing the process irreversibility and promoting the decarbonization of this industrial sector. In the integrated chemical plants proposed in this work, the purpose is co ...
The energy transition towards a carbon-neutral and sustainable economy is one of the greatest challenges of the 21st century to combat global warming and pollution. The decarbonization process is affecting every sector of the economy (electricity, transpor ...
Anion exchange membrane fuel cells (AEMFCs) are considered one of the most promising and efficient hydrogen conversion technologies due to their ability to use cost-effective materials. However, AEMFCs are still in an early stage of development and the lac ...
Clean energy is highly needed at this time when the energy requirements are rapidly increasing. The observed increasing energy requirement are largely due to continued industrialization and global population explosion. The current means of energy source is ...
Removal of trace CO impurities is an essential step in the utilization of Hydrogen as a clean energy source. While various solutions are currently employed to address this challenge, there is an urgent need to improve their efficiency. Here, we show that a ...
Plasma-molecular interactions generate molecular ions which react with the plasma and contribute to detachment through molecular activated recombination (MAR), reducing the ion target flux, and molecular activated dissociation (MAD), both of which create e ...