Publication

Probabilistic S-N curves for constant and variable amplitude

Abstract

Welded details in steel bridges are subjected to fatigue lives up to 200.10(6) cycles due to traffic loads. While the majority of these stress ranges are below the Constant Amplitude Fatigue Limit (CAFL), some few high stress cycles can trigger the start of fatigue damage and lead the remaining load spectra to become damaging. The behaviour under spectra loading is thus of major importance for the fatigue design of steel bridges. This paper focuses on the fatigue behaviour of welded joints under variable amplitude loads. Fatigue tests have been conducted under constant and variable amplitudes on a typical bridge detail. Experimental crack growth curves were obtained using the Alternative Current Potential Drop method (ACPD), which showed the detrimental effect of stress ranges below the conventional CAFL. A two-step model with initiation-propagation was established to estimate the experimental fatigue lives, using a local strain approach for the initiation life and fracture mechanics for crack propagation. The model was implemented in a probabilistic Monte Carlo framework to include variability on the main parameters and establish S-N curves for Constant and Variable amplitude. The results of the simulations show that load spectra shape can be correlated with the S-N curves, namely the 2nd slope value below the CAFL. (C) 2017 Elsevier Ltd. All rights reserved.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Fatigue (material)
In materials science, fatigue is the initiation and propagation of cracks in a material due to cyclic loading. Once a fatigue crack has initiated, it grows a small amount with each loading cycle, typically producing striations on some parts of the fracture surface. The crack will continue to grow until it reaches a critical size, which occurs when the stress intensity factor of the crack exceeds the fracture toughness of the material, producing rapid propagation and typically complete fracture of the structure.
Fracture mechanics
Fracture mechanics is the field of mechanics concerned with the study of the propagation of cracks in materials. It uses methods of analytical solid mechanics to calculate the driving force on a crack and those of experimental solid mechanics to characterize the material's resistance to fracture. Theoretically, the stress ahead of a sharp crack tip becomes infinite and cannot be used to describe the state around a crack. Fracture mechanics is used to characterise the loads on a crack, typically using a single parameter to describe the complete loading state at the crack tip.
Variable star
A variable star is a star whose brightness as seen from Earth (its apparent magnitude) changes with time. This variation may be caused by a change in emitted light or by something partly blocking the light, so variable stars are classified as either: Intrinsic variables, whose luminosity actually changes; for example, because the star periodically swells and shrinks. Extrinsic variables, whose apparent changes in brightness are due to changes in the amount of their light that can reach Earth; for example, because the star has an orbiting companion that sometimes eclipses it.
Show more
Related publications (47)

Crack kinematics prediction in concrete structures and assessment of their criticality

Ludivine Menoud

The observation of cracks in normally functioning reinforced concrete (RC) structures is expected as the tensile strength of concrete is relatively low. However, one or more of those cracks can start to propagate with increasing crack openings, localizing ...
2023

Fatigue behavior of transverse attachments under constant and variable amplitude loading from a Swiss motorway bridge

Alain Nussbaumer, Davide Leonetti, Yukina Takai

This paper investigates the fatigue behavior of non-load-carrying transverse welded steel attachments by reporting on an experimental characterization under constant and variable amplitude loading. Fatigue cracks have been monitored using DIC and ACPD tech ...
London2023

Effect of water on sandstone's fracture toughness and frictional parameters: Brittle strength constraints

Marie Estelle Solange Violay, Corentin Jean-Marie Rémi Noël

Water presence causes a dramatic reduction of sandstone strength. Under compressive stress conditions, the strength of a rock sample is controlled by frictional parameters and the fracture toughness of the material. Here, we report fracture toughness, fric ...
2021
Show more
Related MOOCs (1)
The Art of Structures I - Cables and arcs
Ce cours présente les principes du fonctionnement, du dimensionnement et de la conception des structures. L'approche est basée sur une utilisation de la statique graphique et traite en particulier des