In materials science, fatigue is the initiation and propagation of cracks in a material due to cyclic loading. Once a fatigue crack has initiated, it grows a small amount with each loading cycle, typically producing striations on some parts of the fracture surface. The crack will continue to grow until it reaches a critical size, which occurs when the stress intensity factor of the crack exceeds the fracture toughness of the material, producing rapid propagation and typically complete fracture of the structure.
Fatigue has traditionally been associated with the failure of metal components which led to the term metal fatigue. In the nineteenth century, the sudden failing of metal railway axles was thought to be caused by the metal crystallising because of the brittle appearance of the fracture surface, but this has since been disproved. Most materials, such as composites, plastics and ceramics, seem to experience some sort of fatigue-related failure.
To aid in predicting the fatigue life of a component, fatigue tests are carried out using coupons to measure the rate of crack growth by applying constant amplitude cyclic loading and averaging the measured growth of a crack over thousands of cycles. However, there are also a number of special cases that need to be considered where the rate of crack growth is significantly different compared to that obtained from constant amplitude testing. Such as the reduced rate of growth that occurs for small loads near the threshold or after the application of an overload; and the increased rate of crack growth associated with short cracks or after the application of an underload.
If the loads are above a certain threshold, microscopic cracks will begin to initiate at stress concentrations such as holes, persistent slip bands (PSBs), composite interfaces or grain boundaries in metals. The stress values that cause fatigue damage are typically much less than the yield strength of the material.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In engineering, a fail-safe is a design feature or practice that, in the event of a specific type of failure, inherently responds in a way that will cause minimal or no harm to other equipment, to the environment or to people. Unlike inherent safety to a particular hazard, a system being "fail-safe" does not mean that failure is impossible or improbable, but rather that the system's design prevents or mitigates unsafe consequences of the system's failure.
Fracture mechanics is the field of mechanics concerned with the study of the propagation of cracks in materials. It uses methods of analytical solid mechanics to calculate the driving force on a crack and those of experimental solid mechanics to characterize the material's resistance to fracture. Theoretically, the stress ahead of a sharp crack tip becomes infinite and cannot be used to describe the state around a crack. Fracture mechanics is used to characterise the loads on a crack, typically using a single parameter to describe the complete loading state at the crack tip.
In materials science, work hardening, also known as strain hardening, is the strengthening of a metal or polymer by plastic deformation. Work hardening may be desirable, undesirable, or inconsequential, depending on the context. This strengthening occurs because of dislocation movements and dislocation generation within the crystal structure of the material. Many non-brittle metals with a reasonably high melting point as well as several polymers can be strengthened in this fashion.
Ce cours permet l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimique en liaison avec les propriétés mécaniques, thermiques, électri
This course covers elementary fracture mechanics and its application to the fracture of engineering materials.
Présentation des mécanismes de déformation des matériaux inorganiques: élasticité, plasticité, fluage.
Ce cours présente les principes du fonctionnement, du dimensionnement et de la conception des structures. L'approche est basée sur une utilisation de la statique graphique et traite en particulier des
L'art des structures propose une découverte du fonctionnement des structures porteuses, telles que les bâtiments, les toitures ou les ponts. Ce cours présente les principes du dimensionnement et les s
The tension–tension fatigue behavior of pseudo-ductile hybrid bonded-bolted double lap basalt composite joints, composed of pseudo-ductile adhesives and adherends with multi-directional fiber architecture, was experimentally investigated. The fatigue damag ...
2024
, ,
The local undercut defects at the weld toe provide a potential initiation site for fatigue cracks and significantly impact the structure's fatigue strength. The influence of continuous undercut depth on fatigue performance is widely studied, but the resear ...
Ultra-high performance fiber reinforced cementitious composite (UHPFRC) is a modern class of cementitious building materials. Because of its superior mechanical properties and durability, it is increasingly used globally to rehabilitate, strengthen and mod ...