Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Sub-millimeter scale devices are developing rapidly taking smaller, smarter, and more precise forms. This is achieved thanks to advancements in micro-manufacturing tools and techniques. For micro-production, a miniaturization of the machinery is a prominent idea that has numerous benefits in terms of material usage, precision, transportation, modularity, and reconfigurability. In this paper, a modular and reconfigurable desktop microfactory for high precision machining and assembly of sub-millimeter scale mechanical parts is presented and experimentally validated. The proposed system is built based on important functional and performance requirements, including miniaturization, high precision operation, modular and reconfigurable design, parallel processing capability, ease of installation, and transportation. The miniature factory consists of five mini processing units; two parallel kinematic robots for manipulation, the laser micro-machining system, the camera system for detection and inspection, and the rotational conveyor system for micro-part delivery. Different configurations of the system layout are proposed taking advantage of their modular design. Experiments are conducted to evaluate the system performance within a single process, like pick-place of a metallic ball with 3 mm diameter, laser machining of a half-millimeter size contour on the surface of the ball, and inspection and verification of the machined contour by means of microscopic camera. The results presented in this work demonstrate micrometer precision operation of the microfactory, showing high potential for manufacturing electro-mechanical devices with ease of readjustment of the microfactory layout.
Anastasia Ailamaki, Panagiotis Sioulas, Eleni Zapridou
Christian Enz, Yves Bellouard, Assim Boukhayma, Andrea Kraxner, Olivier Bernard