Wave packetIn physics, a wave packet (also known as a wave train or wave group) is a short burst of localized wave action that travels as a unit, outlined by an envelope. A wave packet can be analyzed into, or can be synthesized from, a potentially-infinite set of component sinusoidal waves of different wavenumbers, with phases and amplitudes such that they interfere constructively only over a small region of space, and destructively elsewhere.
Behavior modificationBehavior modification is an early approach that used respondent and operant conditioning to change behavior. Based on methodological behaviorism, overt behavior was modified with consequences, including positive and negative reinforcement contingencies to increase desirable behavior, or administering positive and negative punishment and/or extinction to reduce problematic behavior. It also used Flooding desensitization to combat phobias.
Wheeler's delayed-choice experimentWheeler's delayed-choice experiment describes a family of thought experiments in quantum physics proposed by John Archibald Wheeler, with the most prominent among them appearing in 1978 and 1984. These experiments are attempts to decide whether light somehow "senses" the experimental apparatus in the double-slit experiment it travels through, adjusting its behavior to fit by assuming an appropriate determinate state, or whether light remains in an indeterminate state, exhibiting both wave-like and particle-like behavior until measured.
Pilot wave theoryIn theoretical physics, the pilot wave theory, also known as Bohmian mechanics, was the first known example of a hidden-variable theory, presented by Louis de Broglie in 1927. Its more modern version, the de Broglie–Bohm theory, interprets quantum mechanics as a deterministic theory, avoiding troublesome notions such as wave–particle duality, instantaneous wave function collapse, and the paradox of Schrödinger's cat. To solve these problems, the theory is inherently nonlocal.
Phase factorFor any complex number written in polar form (such as r eiθ), the phase factor is the complex exponential factor (eiθ). As such, the term "phase factor" is related to the more general term phasor, which may have any magnitude (i.e. not necessarily on the unit circle in the complex plane). The phase factor is a unit complex number, i.e. a complex number of absolute value 1. It is commonly used in quantum mechanics. The variable θ appearing in such an expression is generally referred to as the phase.
Angular momentum diagrams (quantum mechanics)In quantum mechanics and its applications to quantum many-particle systems, notably quantum chemistry, angular momentum diagrams, or more accurately from a mathematical viewpoint angular momentum graphs, are a diagrammatic method for representing angular momentum quantum states of a quantum system allowing calculations to be done symbolically. More specifically, the arrows encode angular momentum states in bra–ket notation and include the abstract nature of the state, such as tensor products and transformation rules.