Modeling robot geometries like molecules, application to fast multi-contact posture planning for humanoids
Related publications (57)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Robot motion planning involves finding a feasible path for a robot to follow while satisfying a set of constraints and optimizing an objective function. This problem is critical for enabling robots to navigate and perform tasks in realworld environments. H ...
State-dependent dynamical systems (DSs) offer adaptivity, reactivity, and robustness to perturbations in motion planning and physical human-robot interaction tasks. Learning DS-based motion plans from non-linear reference trajectories is an active research ...
Many robotics problems are formulated as optimization problems. However, most optimization solvers in robotics are locally optimal and the performance depends a lot on the initial guess. For challenging problems, the solver will often get stuck at poor loc ...
Probability distributions are key components of many learning from demonstration (LfD) approaches, with the spaces chosen to represent tasks playing a central role. Although the robot configuration is defined by its joint angles, end-effector poses are oft ...
We present a combination technique based on mixed differences of both spatial approximations and quadrature formulae for the stochastic variables to solve efficiently a class of Optimal Control Problems (OCPs) constrained by random partial differential equ ...
Origami robots are characterized by their compact design, quasi-two-dimensional manufacturing process, and folding joint-based transmission kinematics. The physical requirements in terms of payload, range of motion, and embedding core robotic components ha ...
We present a combination technique based on mixed differences of both spatial approximations and quadrature formulae for the stochastic variables to solve efficiently a class of optimal control problems (OCPs) constrained by random partial differential equ ...
Programming intelligent robots requires robust controllers that can achieve desired tasks while adapting to the changes in the task and the environment. In this thesis, we address the challenges in designing such adaptive and anticipatory feedback controll ...
As an emerging technology in the era of Industry 4.0, digital twin is gaining unprecedented attention because of its promise to further optimize process design, quality control, health monitoring, decision- and policy-making, and more, by comprehensively m ...
Mainstream approaches to design spatial architectural forms that are structurally relevant consist either in adapting well-known and catalogued conventional types or in searching for close-to-optimum solutions of well-defined problems. Few means exist to e ...