Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Non-convex constrained optimization problems have become a powerful framework for modeling a wide range of machine learning problems, with applications in k-means clustering, large- scale semidefinite programs (SDPs), and various other tasks. As the perfor ...
Popular clustering algorithms based on usual distance functions (e.g., the Euclidean distance) often suffer in high dimension, low sample size (HDLSS) situations, where concentration of pairwise distances and violation of neighborhood structure have advers ...
This paper offers a new algorithm to efficiently optimize scheduling decisions for dial-a-ride problems (DARPs), including problem variants considering electric and autonomous vehicles (e-ADARPs). The scheduling heuristic, based on linear programming theor ...
In this thesis we present and analyze approximation algorithms for three different clustering problems. The formulations of these problems are motivated by fairness and explainability considerations, two issues that have recently received attention in the ...
This thesis focuses on designing spectral tools for graph clustering in sublinear time. With the emergence of big data, many traditional polynomial time, and even linear time algorithms have become prohibitively expensive. Processing modern datasets requir ...
We propose a variance reduced algorithm for solving monotone variational inequalities. Without assuming strong monotonicity, cocoercivity, or boundedness of the domain, we prove almost sure convergence of the iterates generated by the algorithm to a soluti ...
This article studies a class of nonsmooth decentralized multiagent optimization problems where the agents aim at minimizing a sum of local strongly-convex smooth components plus a common nonsmooth term. We propose a general primal-dual algorithmic framewor ...
The task of optimally designing and scheduling energy systems with a high share of renewable energies is complex and computationally demanding. A widespread method for tackling this task is to apply mixed integer linear programming (MILP). Even though the ...
In this thesis we give new algorithms for two fundamental graph problems. We develop novel ways of using linear programming formulations, even exponential-sized ones, to extract structure from problem instances and to guide algorithms in making progress. S ...
This paper presents an early-stage application of the design science research (DSR) method to obtain a new idea selection approach, which uses clustering to filter ideas while taking into account the seeker’s goals and the learning dynamics. Most of previo ...