Atomistic simulations of dislocation behavior in a model FCC multicomponent concentrated solid solution alloy
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Molecular dynamics simulations of dislocation/obstacle interactions are enhancing our physical understanding of plasticity. However, despite increasing computational power, the interaction between simulation cell boundaries and the long ranged fields of di ...
Using atomistic simulations, the effect of jogs on the cross-slip of screw character dislocations and screw-dipole annihilation was examined for both FCC Cu and Ni. The stress-free activation energy for cross-slip at jogs is close to 0.4 eV in Cu, determin ...
Dislocation core structures of hcp metals are highly complex and differ significantly among the hcp family. Some dislocations undergo unconventional transformations that have significant effects on the material plastic flow. Here, the energetics of disloca ...
The line tension Gamma of a dislocation is an important and fundamental property ubiquitous to continuum scale models of metal plasticity. However, the precise value of Gamma in a given material has proven difficult to assess, with literature values encomp ...
Dislocation dynamics are important to understand material plasticity in small-sized materials. In case of face-centered cubic crystalline systems, densities of initial dislocations, dislocation nucleations and starvations processes influence material stren ...
Molecular dynamics simulation is used to study the formation of the a(0) < 1 0 0 > binary dislocation junction in body-centered cubic Fe. Results show that under an applied strain two intersecting 1/2 a(0) < 1 1 1 > dislocations, one mobile edge and one im ...
Semiconductor nanowires have increased the palette of possible heterostructures thanks to their more effective strain relaxation. Among these core shell heterostructures are much more sensitive to strain than axial Ones. It is now accepted that the formati ...
We report the experimental observation of the 1/2 < 111 > edge dislocation dipole formation and annihilation in ultra-high purity Fe using transmission electron microscopy (TEM) in-situ straining. The observation is confirmed by TEM image simulations. The ...
The continuous matrices of atomic displacements and lattice distortion from face-centered-cubic (fcc) to body-centered-cubic (bcc) phases compatible with the hard-sphere geometry of iron atoms are calculated for different possible final orientation relatio ...
Atomistic simulations of the effects of H on edge dislocation mobility and pile-ups are performed to investigate possible nanoscale mechanisms for hydrogen-enhanced localized plasticity (HELP). alpha-Fe is used as a model system because H diffusion is fast ...