Fuel efficiencyFuel efficiency is a form of thermal efficiency, meaning the ratio of effort to result of a process that converts chemical potential energy contained in a carrier (fuel) into kinetic energy or work. Overall fuel efficiency may vary per device, which in turn may vary per application, and this spectrum of variance is often illustrated as a continuous . Non-transportation applications, such as industry, benefit from increased fuel efficiency, especially fossil fuel power plants or industries dealing with combustion, such as ammonia production during the Haber process.
Solar irradianceSolar irradiance is the power per unit area (surface power density) received from the Sun in the form of electromagnetic radiation in the wavelength range of the measuring instrument. Solar irradiance is measured in watts per square metre (W/m2) in SI units. Solar irradiance is often integrated over a given time period in order to report the radiant energy emitted into the surrounding environment (joule per square metre, J/m2) during that time period. This integrated solar irradiance is called solar irradiation, solar exposure, solar insolation, or insolation.
Solar fuelA solar fuel is a synthetic chemical fuel produced from solar energy. Solar fuels can be produced through photochemical (i.e. activation of certain chemical reactions by photons), photobiological (i.e., artificial photosynthesis), and electrochemical reactions (i.e. using the electricity from solar panels to drive a chemical reaction). Solar fuels can also be produced by thermochemical reactions (i.e., through the use of solar heat supplied by concentrated solar thermal energy to drive a chemical reaction).
Job performanceJob performance assesses whether a person performs a job well. Job performance, studied academically as part of industrial and organizational psychology, also forms a part of human resources management. Performance is an important criterion for organizational outcomes and success. John P. Campbell describes job performance as an individual-level variable, or something a single person does. This differentiates it from more encompassing constructs such as organizational performance or national performance, which are higher-level variables.
Underground coal gasificationUnderground coal gasification (UCG) is an industrial process which converts coal into product gas. UCG is an in-situ gasification process, carried out in non-mined coal seams using injection of oxidants and steam. The product gas is brought to the surface through production wells drilled from the surface. The predominant product gases are methane, hydrogen, carbon monoxide and carbon dioxide. Ratios vary depending upon formation pressure, depth of coal and oxidant balance. Gas output may be combusted for electricity production.
High-temperature gas reactorA high-temperature gas-cooled reactor (HTGR), is a nuclear reactor that uses a graphite moderator with a once-through uranium fuel cycle. The HTGR is a type of high-temperature reactor (HTR) that can conceptually have an outlet temperature of . The reactor core can be either a "prismatic block" (reminiscent of a conventional reactor core) or a "pebble-bed" core. The high temperatures enable applications such as process heat or hydrogen production via the thermochemical sulfur–iodine cycle.
Pebble-bed reactorThe pebble-bed reactor (PBR) is a design for a graphite-moderated, gas-cooled nuclear reactor. It is a type of very-high-temperature reactor (VHTR), one of the six classes of nuclear reactors in the Generation IV initiative. The basic design of pebble-bed reactors features spherical fuel elements called pebbles. These tennis ball-sized pebbles (approx. in diameter) are made of pyrolytic graphite (which acts as the moderator), and they contain thousands of micro-fuel particles called tristructural-isotropic (TRISO) particles.
Distributed ray tracingDistributed ray tracing, also called distribution ray tracing and stochastic ray tracing, is a refinement of ray tracing that allows for the rendering of "soft" phenomena. Conventional ray tracing uses single rays to sample many different domains. For example, when the color of an object is calculated, ray tracing might send a single ray to each light source in the scene. This leads to sharp shadows, since there is no way for a light source to be partially occluded (another way of saying this is that all lights are point sources and have zero area).
Renewable natural gasRenewable natural gas (RNG), also known as biomethane or sustainable natural gas (SNG), is a biogas which has been upgraded to a quality similar to fossil natural gas and has a methane concentration of 90% or greater. By removing CO2 and other impurities from biogas, and increasing the concentration of methane to a level similar to fossil natural gas, it becomes possible to distribute RNG to customers via existing gas pipeline networks. RNG can be used in existing appliances, including vehicles with natural gas burning engines (natural gas vehicles).
Power-to-gasPower-to-gas (often abbreviated P2G) is a technology that uses electric power to produce a gaseous fuel. When using surplus power from wind generation, the concept is sometimes called windgas. Most P2G systems use electrolysis to produce hydrogen. The hydrogen can be used directly, or further steps (known as two-stage P2G systems) may convert the hydrogen into syngas, methane, or LPG. Single-stage P2G systems to produce methane also exist, such as reversible solid oxide cell (rSOC) technology.