Semi-supervised Learning with Semantic Knowledge Extraction for Improved Speech Recognition in Air Traffic Control
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Over the past few years, there have been fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. The amount of annotated data drastically increased and supervised deep discriminative models exceed ...
Recent breakthroughs in deep learning often rely on representation learning and knowledge transfer. In recent years, unsupervised and self-supervised techniques for learning speech representation were developed to foster automatic speech recognition. Up to ...
EUROPEAN ASSOC SIGNAL SPEECH & IMAGE PROCESSING-EURASIP2021
State-of-the-art acoustic models for Automatic Speech Recognition (ASR) are based on Hidden Markov Models (HMM) and Deep Neural Networks (DNN) and often require thousands of hours of transcribed speech data during training. Therefore, building multilingual ...
Air traffic management and specifically air-traffic control (ATC) rely mostly on voice communications between Air Traffic Controllers (ATCos) and pilots. In most cases, these voice communications follow a well-defined grammar that could be leveraged in Aut ...
Advances in Automatic Speech Recognition (ASR) over the last decade opened new areas of speech-based automation such as in Air-Traffic Control (ATC) environments. Currently, voice communication and Controller Pilot Data Link Communications are the only way ...
In this paper, we explore various approaches for semi-
supervised learning in an end-to-end automatic speech recog-
nition (ASR) framework. The first step in our approach in-
volves training a seed model on the limited amount of labelled
data. Additional u ...
Structured and grounded representation of text is typically formalized by closed information extraction, the problem of extracting an exhaustive set of (subject, relation, object) triplets that are consistent with a predefined set of entities and relations ...
Voice communication is the main channel to exchange information between pilots and Air-Traffic Controllers (ATCos). Recently, several projects have explored the employment of speech recognition technology to automatically extract spoken key information suc ...
In this work, we investigate if the wav2vec 2.0 self-supervised pretraining helps mitigate the overfitting issues with connectionist temporal classification (CTC) training to reduce its performance gap with flat-start lattice-free MMI (E2E-LFMMI) for autom ...
Recent advances in transfer learning and few-shot learning largely rely on annotated data related to the goal task during (pre-)training. However, collecting sufficiently similar and annotated data is often infeasible. Building on advances in self-supervis ...