Space complexityThe space complexity of an algorithm or a computer program is the amount of memory space required to solve an instance of the computational problem as a function of characteristics of the input. It is the memory required by an algorithm until it executes completely. This includes the memory space used by its inputs, called input space, and any other (auxiliary) memory it uses during execution, which is called auxiliary space. Similar to time complexity, space complexity is often expressed asymptotically in big O notation, such as etc.
Computational complexity theoryIn theoretical computer science and mathematics, computational complexity theory focuses on classifying computational problems according to their resource usage, and relating these classes to each other. A computational problem is a task solved by a computer. A computation problem is solvable by mechanical application of mathematical steps, such as an algorithm. A problem is regarded as inherently difficult if its solution requires significant resources, whatever the algorithm used.
Substitution–permutation networkIn cryptography, an SP-network, or substitution–permutation network (SPN), is a series of linked mathematical operations used in block cipher algorithms such as AES (Rijndael), 3-Way, Kalyna, Kuznyechik, PRESENT, SAFER, SHARK, and Square. Such a network takes a block of the plaintext and the key as inputs, and applies several alternating rounds or layers of substitution boxes (S-boxes) and permutation boxes (P-boxes) to produce the ciphertext block. The S-boxes and P-boxes transform of input bits into output bits.
Data Encryption StandardThe Data Encryption Standard (DES ˌdiːˌiːˈɛs,_dɛz) is a symmetric-key algorithm for the encryption of digital data. Although its short key length of 56 bits makes it too insecure for modern applications, it has been highly influential in the advancement of cryptography. Developed in the early 1970s at IBM and based on an earlier design by Horst Feistel, the algorithm was submitted to the National Bureau of Standards (NBS) following the agency's invitation to propose a candidate for the protection of sensitive, unclassified electronic government data.
Lucifer (cipher)In cryptography, Lucifer was the name given to several of the earliest civilian block ciphers, developed by Horst Feistel and his colleagues at IBM. Lucifer was a direct precursor to the Data Encryption Standard. One version, alternatively named DTD-1, saw commercial use in the 1970s for electronic banking. Lucifer uses a combination of transposition and substitution crypting as a starting point in decoding ciphers. One variant, described by Feistel in 1971, uses a 48-bit key and operates on 48-bit blocks.
P (complexity)In computational complexity theory, P, also known as PTIME or DTIME(nO(1)), is a fundamental complexity class. It contains all decision problems that can be solved by a deterministic Turing machine using a polynomial amount of computation time, or polynomial time. Cobham's thesis holds that P is the class of computational problems that are "efficiently solvable" or "tractable". This is inexact: in practice, some problems not known to be in P have practical solutions, and some that are in P do not, but this is a useful rule of thumb.
Attack modelIn cryptanalysis, attack models or attack types are a classification of cryptographic attacks specifying the kind of access a cryptanalyst has to a system under attack when attempting to "break" an encrypted message (also known as ciphertext) generated by the system. The greater the access the cryptanalyst has to the system, the more useful information they can get to utilize for breaking the cypher. In cryptography, a sending party uses a cipher to encrypt (transform) a secret plaintext into a ciphertext, which is sent over an insecure communication channel to the receiving party.
Advanced Encryption StandardThe Advanced Encryption Standard (AES), also known by its original name Rijndael (ˈrɛindaːl), is a specification for the encryption of electronic data established by the U.S. National Institute of Standards and Technology (NIST) in 2001. AES is a variant of the Rijndael block cipher developed by two Belgian cryptographers, Joan Daemen and Vincent Rijmen, who submitted a proposal to NIST during the AES selection process. Rijndael is a family of ciphers with different key and block sizes.
Round (cryptography)In cryptography, a round or round function is a basic transformation that is repeated (iterated) multiple times inside the algorithm. Splitting a large algorithmic function into rounds simplifies both implementation and cryptanalysis. For example, encryption using an oversimplified three-round cipher can be written as , where C is the ciphertext and P is the plaintext. Typically, rounds are implemented using the same function, parameterized by the round constant and, for block ciphers, the round key from the key schedule.
Parameterized complexityIn computer science, parameterized complexity is a branch of computational complexity theory that focuses on classifying computational problems according to their inherent difficulty with respect to multiple parameters of the input or output. The complexity of a problem is then measured as a function of those parameters. This allows the classification of NP-hard problems on a finer scale than in the classical setting, where the complexity of a problem is only measured as a function of the number of bits in the input.