Spontaneous symmetry breaking in a quadratically driven nonlinear photonic lattice
Related publications (33)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We characterize models where electroweak symmetry breaking is driven by two light Higgs doublets arising as pseudo-Nambu-Goldstone bosons of new dynamics above the weak scale. They represent the simplest natural two Higgs doublet alternative to supersymmet ...
The Nernst coefficient of the cuprate superconductor YBa2Cu 3Oy was recently shown to become strongly anisotropic within the basal plane when cooled below the pseudogap temperature T, revealing that the pseudogap phase breaks the fourfold rotational symmet ...
Recent progress in simulation methodologies and in computer power allow first-principles simulations of condensed systems with Born–Oppenheimer electronic energies obtained by quantum Monte Carlo methods. Computing free energies and therefore getting a qua ...
A general formalism for the maximal symmetrization and reduction of fields (MSRFs) is proposed and applied to wave functions in solid-state nanostructures. Its primary target is to provide an essential tool for the study and analysis of the electronic and ...
Motivated by the current interest in the quantum dimer model on the triangular lattice, we investigate the phase diagram of the closely related fully frustrated transverse-field Ising model on the honeycomb lattice using classical and semiclassical approxi ...
The space-group symmetry of a crystal structure imposes a point-group symmetry on its diffraction pattern, giving rise to so-called symmetry-equivalent reflections. Instances in macromolecular crystallography are discussed in which the symmetry in reciproc ...
The theories used up to now to model theoretically and numerically nanostructures, and more specifically semiconductor heterostructures, do not allow to include efficiently at the envelope function level, in a k · p approach, the effects imposed by a possi ...
Dislocations alter perfect crystalline order and produce anisotropic broadening of the X-ray diffraction profiles, which is described by the dislocation contrast factor. Owing to the lack of suitable mathematical tools to deal with dislocations in crystals ...
Quantum dots (QDs) of high symmetry (e.g., C3v) have degenerate bright exciton states, unlike QDs of C2v symmetry, making them intrinsically suitable for the generation of entangled photon pairs. Deviations from C3v symmetry are detected in real QDs by pol ...
We set an upper bound on the gravitational cutoff in theories with exact quantum numbers of large N periodicity, such as Z(N) discrete symmetries. The bound stems from black hole physics. It is similar to the bound appearing in theories with N particle spe ...