Optimized Wavelet Denoising for Self-Similar alpha-Stable Processes
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
A key challenge across many disciplines is to extract meaningful information from data which is often obscured by noise. These datasets are typically represented as large matrices. Given the current trend of ever-increasing data volumes, with datasets grow ...
Our aim is to optimize wavelet-based feature extraction for differentiating between the classical versus atypical pattern of usual interstitial pneumonia (UIP) in volumetric CT. Our proposal is to act on the bandwidth of steerable wavelets while maintainin ...
Objective. Among the different approaches for denoising neural signals, wavelet-based methods are widely used due to their ability to reduce in-band noise. All wavelet denoising algorithms have a common structure, but their effectiveness strongly depends o ...
The benefits and limitations inherent to the 2D post-processing of measurements from Brillouin optical time-domain analyzers are investigated from a fundamental point of view. In a preliminary step, the impact of curve fitting on the precision of the estim ...
The proliferation of (low-cost) sensors provokes new challenges in data fusion. This is related to the correctness of stochastic characterization that is a prerequisite for optimal estimation of parameters from redundant observations. Different (statistica ...
The discrete cosine transform (DCT) is known to be asymptotically equivalent to the Karhunen-Loève transform (KLT) of Gaussian first-order auto-regressive (AR(1)) processes. Since being uncorrelated under the Gaussian hypothesis is synonymous with independ ...
Cycle spinning is a widely used approach for improving the performance of wavelet-based methods that solve linear inverse problems. Extensive numerical experiments have shown that it significantly improves the quality of the recovered signal without increa ...
This thesis addresses statistical inference for the resolution of inverse problems. Our work is motivated by the recent trend whereby classical linear methods are being replaced by nonlinear alternatives that rely on the sparsity of naturally occurring sig ...
The task of inertial sensor calibration has required the development of various techniques to take into account the sources of measurement error coming from such devices. The calibration of the stochastic errors of these sensors has been the focus of incre ...
We propose a signal analysis tool based on the sign (or the phase) of complex wavelet coefficients, which we call a signature. The signature is defined as the fine-scale limit of the signs of a signal's complex wavelet coefficients. We show that the signat ...