Photogenerated Charge Harvesting and Recombination in Photocathodes of Solvent-Exfoliated WSe2
Related publications (36)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Dye-sensitized solar cells (DSCs) are considered as an emerging technology in order to replace conventional silicon solar cells or thin film solar cells such as amorphous silicon, CIGS, and CdTe. Liquid electrolytes containing iodide/triiodide redox couple ...
Dye-sensitized solar cells (DSCs) constitute a novel class of hybrid organic-inorganic solar cells. At the heart of the device is a mesoporous film of titanium dioxide (TiO2) nanoparticles, which are coated with a monolayer of dye sensitive to the visible ...
Panchromatic response is essential to increase the light-harvesting efficiency in solar conversion systems. Herein we show increased light harvesting from using multiple energy relay dyes inside dye-sensitized solar cells. Additional photoresponse from 400 ...
Dye-sensitized solar cells (DSC) are a new class of molecular photovoltaics that mimics the natural photosynthesis, for the direct conversion of sunlight into electricity. A typical DSC is a sandwich of a dye sensitized nanoparticle TiO2 film and a catalys ...
The tandem photoelectochemical (PEC) cell based on oxide semiconductors for water splitting offers a potentially inexpensive route for solar hydrogen generation. At the heart of the device, a nanostructured photoanode for water oxidation is connected in se ...
The chloroplast contains densely stacked arrays of light-harvesting proteins that harness solar energy with theor. max. glucose conversion efficiencies approaching 12%. Few studies have explored isolated chloroplasts as a renewable, abundant, and low cost ...
Dye-sensitized solar cells employing mesoporous TiO2 beads have demonstrated longer electron diffusion lengths and extended electron lifetimes over Degussa P25 titania electrodes due to the well interconnected, densely packed nanocrystalline TiO2 particles ...
The actualization of a hydrogen economy requires cost-effective and environmentally benign solutions to hydrogen production. Chemical energy in the form of hydrogen is more interesting than electricity to satisfy our ever-increasing energy demand because i ...
Due to their fascinating optical and electronical properties, nanometer-scaled structures play an important role in solar energy conversion [1]. Nanocomposite coatings consist typically of dielectric, semiconducting or metallic nanocrystals embedded in a h ...
Given the limitations of the materials available for photoelectrochemical water splitting, a multiphoton (tandem) approach is required to convert solar energy into hydrogen efficiently and durably. Here we investigate a promising system consisting of a hem ...