**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Motivic and p-adic Localization Phenomena

Abstract

In this thesis we compute motivic classes of hypertoric varieties, Nakajima quiver varieties and open de Rham spaces in a certain localization of the Grothendieck ring of varieties. Furthermore we study the $p$-adic pushforward of the Haar measure under a hypertoric moment map $\mu$. This leads to an explicit formula for the Igusa zeta function $\FI_\mu(s)$ of $\mu$, and in particular to a small set of candidate poles for $\FI_\mu(s)$. We also study various properties of the residue at the largest pole of $\FI_\mu(s)$. Finally, if $\mu$ is constructed out of a quiver $\Gamma$ we give a conjectural description of this residue in terms of indecomposable representations of $\Gamma$ over finite depth rings. The connections between these different results is the method of proof. At the heart of each theorem lies a motivic or $p$-adic volume computation, which is only possible due to some surprising cancellations. These cancellations are reminiscent of a result in classical symplectic geometry by Duistermaat and Heckman on the localization of the Liouville measure, hence the title of the thesis.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts

Loading

Related publications

Loading

Related MOOCs

Loading

Related MOOCs

Related publications

Related concepts (6)

Alexander Grothendieck

Alexander Grothendieck (ˈgroʊtəndiːk; ˌalɛˈksandɐ ˈɡʁoːtn̩ˌdiːk; ɡʁɔtɛndik; 28 March 1928 – 13 November 2014) was a French mathematician who became the leading figure in the creation of modern algebraic geometry. His research extended the scope of the field and added elements of commutative algebra, homological algebra, sheaf theory, and to its foundations, while his so-called "relative" perspective led to revolutionary advances in many areas of pure mathematics. He is considered by many to be the greatest mathematician of the twentieth century.

Quiver (mathematics)

In graph theory, a quiver is a directed graph where loops and multiple arrows between two vertices are allowed, in other words a multidigraph. They are commonly used in representation theory: a representation V of a quiver assigns a vector space V(x) to each vertex x of the quiver and a linear map V(a) to each arrow a. In , a quiver can be understood to be the underlying structure of a , but without composition or a designation of identity morphisms. That is, there is a forgetful functor from Cat to Quiv.

Haar measure

In mathematical analysis, the Haar measure assigns an "invariant volume" to subsets of locally compact topological groups, consequently defining an integral for functions on those groups. This measure was introduced by Alfréd Haar in 1933, though its special case for Lie groups had been introduced by Adolf Hurwitz in 1897 under the name "invariant integral". Haar measures are used in many parts of analysis, number theory, group theory, representation theory, statistics, probability theory, and ergodic theory.

No results

No results