In algebraic geometry, the Chow groups (named after Wei-Liang Chow by ) of an algebraic variety over any field are algebro-geometric analogs of the homology of a topological space. The elements of the Chow group are formed out of subvarieties (so-called algebraic cycles) in a similar way to how simplicial or cellular homology groups are formed out of subcomplexes. When the variety is smooth, the Chow groups can be interpreted as cohomology groups (compare Poincaré duality) and have a multiplication called the intersection product. The Chow groups carry rich information about an algebraic variety, and they are correspondingly hard to compute in general.
For what follows, define a variety over a field to be an integral scheme of finite type over . For any scheme of finite type over , an algebraic cycle on means a finite linear combination of subvarieties of with integer coefficients. (Here and below, subvarieties are understood to be closed in , unless stated otherwise.) For a natural number , the group of -dimensional cycles (or -cycles, for short) on is the free abelian group on the set of -dimensional subvarieties of .
For a variety of dimension and any rational function on which is not identically zero, the divisor of is the -cycle
where the sum runs over all -dimensional subvarieties of and the integer denotes the order of vanishing of along . (Thus is negative if has a pole along .) The definition of the order of vanishing requires some care for singular.
For a scheme of finite type over , the group of -cycles rationally equivalent to zero is the subgroup of generated by the cycles for all -dimensional subvarieties of and all nonzero rational functions on . The Chow group of -dimensional cycles on is the quotient group of by the subgroup of cycles rationally equivalent to zero. Sometimes one writes for the class of a subvariety in the Chow group, and if two subvarieties and have , then and are said to be rationally equivalent.
For example, when is a variety of dimension , the Chow group is the divisor class group of .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Algebraic K-theory, which to any ring R associates a sequence of groups, can be viewed as a theory of linear algebra over an arbitrary ring. We will study in detail the first two of these groups and a
This course will explain the theory of vanishing cycles and perverse sheaves. We will see how the Hard Lefschetz theorem can be proved using perverse sheaves. If we have more time we will try to see t
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
In mathematics, intersection theory is one of the main branches of algebraic geometry, where it gives information about the intersection of two subvarieties of a given variety. The theory for varieties is older, with roots in Bézout's theorem on curves and elimination theory. On the other hand, the topological theory more quickly reached a definitive form. There is yet an ongoing development of intersection theory. Currently the main focus is on: virtual fundamental cycles, quantum intersection rings, Gromov-Witten theory and the extension of intersection theory from schemes to stacks.
This is a glossary of algebraic geometry. See also glossary of commutative algebra, glossary of classical algebraic geometry, and glossary of ring theory. For the number-theoretic applications, see glossary of arithmetic and Diophantine geometry. For simplicity, a reference to the base scheme is often omitted; i.e., a scheme will be a scheme over some fixed base scheme S and a morphism an S-morphism.
Motivic cohomology is an invariant of algebraic varieties and of more general schemes. It is a type of cohomology related to motives and includes the Chow ring of algebraic cycles as a special case. Some of the deepest problems in algebraic geometry and number theory are attempts to understand motivic cohomology. Let X be a scheme of finite type over a field k. A key goal of algebraic geometry is to compute the Chow groups of X, because they give strong information about all subvarieties of X.
We prove the bigness of the Chow-Mumford line bundle associated to a Q-Gorenstein family of log Fano varieties of maximal variation with uniformly K-stable general geometric fibers. This result generalizes a theorem of Codogni and Patakfalvi to the logarit ...
This thesis is constituted of one article and three preprints that I wrote during my PhD thesis. Their common theme is the moduli theory of algebraic varieties. In the first article I study the Chow--Mumford line bundle for families of uniformly K-stable F ...
The Chow-Mumford (CM) line bundle is a functorial line bundle on the base of any family of klt Fano varieties. It is conjectured that it yields a polarization on the moduli space of K-poly-stable klt Fano varieties. Proving ampleness of the CM line bundle ...