A molecular quantum spin network controlled by a single qubit
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Holes in germanium nanowires have emerged as a realistic platform for quantum computing based on spin qubit logic. On top of the large spin–orbit coupling that allows fast qubit operation, nanowire geometry and orientation can be tuned to cancel out charge ...
Quantum computing promises to revolutionize our lives, achieving unprecedented computational powers and unlocking new possibilities in drug discovery, chemical simulations and cryptography. The fundamental unit of computation of a quantum computer is the q ...
Atomtronics is an emerging field that aims to manipulate ultracold atom moving in matter-wave circuits for fundamental studies in both quantum science and technological applications. In this Colloquium, recent progress in matter-wave circuitry and atomtron ...
Quantum computing is one of the great scientific challenges of the 21st century. Small-scalesystems today promise to surpass classical computers in the coming years and to enable thesolution of classically intractable computational tasks in the fields of q ...
The application of quantum algorithms to the study of many-particle quantum systems requires the ability to prepare wave functions that are relevant in the behavior of the system under study. Hamiltonian symmetries are important instruments used to classif ...
Engineering the electromagnetic environment of a quantum emitter gives rise to a plethora of exotic light -matter interactions. In particular, photonic lattices can seed long-lived atom-photon bound states inside photonic band gaps. Here, we report on the ...
Bosonic quantum codes redundantly encode quantum information in the states of a quantum harmonic oscillator, making it possible to detect and correct errors. Schrodinger cat codes-based on the superposition of two coherent states with opposite displacement ...
Quantum computing could potentially offer faster solutions for some of today's classically intractable problems using quantum processors as computational support for quantum algorithms [1]. Quantum processors, in the most frequent embodiment, comprise an a ...
We propose a scheme for universal quantum computing based on Kramers rare-earth ions. Their nuclear spins in the presence of a Zeeman-split electronic crystal field ground state act as "passive" qubits that store quantum information. The "active" qubits ar ...
Owing in large part to the advent of integrated biphoton frequency combs, recent years have witnessed increased attention to quantum information processing in the frequency domain for its inherent high dimensionality and entanglement compatible with fiber- ...