Nominal type systemIn computer science, a type system is nominal, nominative, or name-based if compatibility and equivalence of data types is determined by explicit declarations and/or the name of the types. Nominal systems are used to determine if types are equivalent, as well as if a type is a subtype of another. Nominal type systems contrast with structural systems, where comparisons are based on the structure of the types in question and do not require explicit declarations.
Kind (type theory)In the area of mathematical logic and computer science known as type theory, a kind is the type of a type constructor or, less commonly, the type of a higher-order type operator. A kind system is essentially a simply typed lambda calculus "one level up", endowed with a primitive type, denoted and called "type", which is the kind of any data type which does not need any type parameters. A kind is sometimes confusingly described as the "type of a (data) type", but it is actually more of an arity specifier.
Type theoryIn mathematics, logic, and computer science, a type theory is the formal presentation of a specific type system, and in general, type theory is the academic study of type systems. Some type theories serve as alternatives to set theory as a foundation of mathematics. Two influential type theories that were proposed as foundations are Alonzo Church's typed λ-calculus and Per Martin-Löf's intuitionistic type theory. Most computerized proof-writing systems use a type theory for their foundation, a common one is Thierry Coquand's Calculus of Inductive Constructions.
Substructural type systemSubstructural type systems are a family of type systems analogous to substructural logics where one or more of the structural rules are absent or only allowed under controlled circumstances. Such systems are useful for constraining access to system resources such as , locks, and memory by keeping track of changes of state that occur and preventing invalid states. Several type systems have emerged by discarding some of the structural rules of exchange, weakening, and contraction: Ordered type systems (discard exchange, weakening and contraction): Every variable is used exactly once in the order it was introduced.
Abstraction (computer science)In software engineering and computer science, abstraction is: The process of removing or generalizing physical, spatial, or temporal details or attributes in the study of objects or systems to focus attention on details of greater importance; it is similar in nature to the process of generalization; the creation of abstract concept-objects by mirroring common features or attributes of various non-abstract objects or systems of study – the result of the process of abstraction.
First-class citizenIn a given programming language design, a first-class citizen is an entity which supports all the operations generally available to other entities. These operations typically include being passed as an argument, returned from a function, and assigned to a variable. The concept of first- and second-class objects was introduced by Christopher Strachey in the 1960s. He did not actually define the term strictly, but contrasted real numbers and procedures in ALGOL: First and second class objects.
First-class functionIn computer science, a programming language is said to have first-class functions if it treats functions as first-class citizens. This means the language supports passing functions as arguments to other functions, returning them as the values from other functions, and assigning them to variables or storing them in data structures. Some programming language theorists require support for anonymous functions (function literals) as well.
Second-order logicIn logic and mathematics, second-order logic is an extension of first-order logic, which itself is an extension of propositional logic. Second-order logic is in turn extended by higher-order logic and type theory. First-order logic quantifies only variables that range over individuals (elements of the domain of discourse); second-order logic, in addition, also quantifies over relations. For example, the second-order sentence says that for every formula P, and every individual x, either Px is true or not(Px) is true (this is the law of excluded middle).
Abstract interpretationIn computer science, abstract interpretation is a theory of sound approximation of the semantics of computer programs, based on monotonic functions over ordered sets, especially lattices. It can be viewed as a partial execution of a computer program which gains information about its semantics (e.g., control-flow, data-flow) without performing all the calculations.
Object-based languageThe term object-based language may be used in a technical sense to describe any programming language that uses the idea of encapsulating state and operations inside objects. Object-based languages need not support inheritance or subtyping, but those that do are also termed object-oriented. Object-based languages that do not support inheritance or subtyping are usually not considered to be true object-oriented languages.