Deeply Vulnerable -- a study of the robustness of face recognition to presentation attacks
Related publications (35)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
During the Artificial Intelligence (AI) revolution of the past decades, deep neural networks have been widely used and have achieved tremendous success in visual recognition. Unfortunately, deploying deep models is challenging because of their huge model s ...
In this supplementary material, we present the details of the neural network architecture and training settings used in all our experiments. This holds for all experiments presented in the main paper as well as in this supplementary material. We also show ...
Deep neural networks (DNNs) are used to reconstruct transmission speckle intensity patterns from the respective reflection speckle intensity patterns generated by illuminated parafilm layers. The dependence of the reconstruction accuracy on the thickness o ...
The relationship between simulated ion cyclotron emission (ICE) signals s and the corresponding 1D velocity distribution function f(upsilon(perpendicular to)) of the fast ions triggering the ICE is modeled using a two-layer deep neural network. The network ...
Face recognition has become a popular authentication tool in recent years. Modern state-of-the-art (SOTA) face recognition methods rely on deep neural networks, which extract discriminative features from face images. Although these methods have high recogn ...
The way our brain learns to disentangle complex signals into unambiguous concepts is fascinating but remains largely unknown. There is evidence, however, that hierarchical neural representations play a key role in the cortex. This thesis investigates biolo ...
A common pattern of progress in engineering has seen deep neural networks displacing human-designed logic. There are many advantages to this approach, divorcing decisionmaking from human oversight and intuition has costs as well. One is that deep neural ne ...
In this paper, we trace the history of neural networks applied to natural language understanding tasks, and identify key contributions which the nature of language has made to the development of neural network architectures. We focus on the importance of v ...
Deep convolutional neural networks have shown remarkable results on face recognition (FR). Despite their significant progress, the performance of current face recognition techniques is often assessed in benchmarks under not always realistic conditions. The ...
The advances made in predicting visual saliency using deep neural networks come at the expense of collecting large-scale annotated data. However, pixel-wise annotation is labor-intensive and overwhelming. In this paper, we propose to learn saliency predict ...