Reducing circuit design complexity for neuromorphic machine learning systems based on Non-Volatile Memory arrays
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Modern integrated circuits are tiny yet incredibly complex technological artifacts, composed of millions and billions of individual structures working in unison.Managing their complexity and facilitating their design drove part of the co-evolution of moder ...
Proprioception tells the brain the state of the body based on distributed sensors in the body. However, the principles that govern proprioceptive processing from those distributed sensors are poorly understood. Here, we employ a task-driven neural network ...
Neural decoding of the visual system is a subject of research interest, both to understand how the visual system works and to be able to use this knowledge in areas, such as computer vision or brain-computer interfaces. Spike-based decoding is often used, ...
The ability to reason, plan and solve highly abstract problems is a hallmark of human intelligence. Recent advancements in artificial intelligence, propelled by deep neural networks, have revolutionized disciplines like computer vision and natural language ...
In the past decades, a significant increase of the transistor density on a chip has led to exponential growth in computational power driven by Moore's law. To overcome the bottleneck of traditional von-Neumann architecture in computational efficiency, effo ...
Driven by the demand for real-time processing and the need to minimize latency in AI algorithms, edge computing has experienced remarkable progress. Decision-making AI applications stand out for their heavy reliance on data-centric operations, predominantl ...
In this PhD manuscript, we explore optimisation phenomena which occur in complex neural networks through the lens of 2-layer diagonal linear networks. This rudimentary architecture, which consists of a two layer feedforward linear network with a diagonal ...
The research presented in this article draws inspiration from previous efforts aimed at replicating the functions of various solid-state memristors using a variety of materials. The memristor circuit emulator serves as a cost-effective tool for circuit des ...
In humans and animals, surprise is a physiological reaction to an unexpected event, but how surprise can be linked to plausible models of neuronal activity is an open problem. We propose a self-supervised spiking neural network model where a surprise signa ...
This article summarizes the recent advancements in the design, fabrication, and control of microrobotic devices for the diagnosis and treatment of brain disorders. With a focus on diverse actuation methods, we discuss how advancements in materials science ...