Publication

Full-Scale Testing of Deep Wide-Flange Steel Columns under Multiaxis Cyclic Loading: Loading Sequence, Boundary Effects, and Lateral Stability Bracing Force Demands

Abstract

This paper discusses the findings from 10 full-scale steel column tests subjected to multiaxis cyclic loading. The columns use deep wide-flange cross sections typically seen in steel moment-resisting frames designed in seismic regions. The effects of boundary conditions, loading sequence, local web, and member slenderness ratios on the column hysteretic behavior are investigated. The test data underscore the influence of boundary conditions on the damage progression of steel columns. Local buckling followed by out-of-plane deformations near the plastified column base are the dominant failure modes in fixed base columns with a realistic flexible top end. Twisting may occur only at drifts larger than 3% even when the member slenderness is fairly large. The test data suggest that bidirectional loading amplifies the out-of-plane deformations but does not significantly affect the overall column performance. The loading sequence strongly affects the column’s plastic deformation capacity but only at story drifts larger than 2%.Above this driftamplitude, column axial shortening grows exponentially and becomes a controlling failure mode. Measurements of the lateral stability bracing force demands at the column top exceed the lateral brace design force specified in North American standards.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Buckling
In structural engineering, buckling is the sudden change in shape (deformation) of a structural component under load, such as the bowing of a column under compression or the wrinkling of a plate under shear. If a structure is subjected to a gradually increasing load, when the load reaches a critical level, a member may suddenly change shape and the structure and component is said to have buckled. Euler's critical load and Johnson's parabolic formula are used to determine the buckling stress of a column.
Dirichlet boundary condition
In the mathematical study of differential equations, the Dirichlet (or first-type) boundary condition is a type of boundary condition, named after Peter Gustav Lejeune Dirichlet (1805–1859). When imposed on an ordinary or a partial differential equation, it specifies the values that a solution needs to take along the boundary of the domain. In finite element method (FEM) analysis, essential or Dirichlet boundary condition is defined by weighted-integral form of a differential equation.
Robin boundary condition
In mathematics, the Robin boundary condition (ˈrɒbɪn; properly ʁɔbɛ̃), or third type boundary condition, is a type of boundary condition, named after Victor Gustave Robin (1855–1897). When imposed on an ordinary or a partial differential equation, it is a specification of a linear combination of the values of a function and the values of its derivative on the boundary of the domain. Other equivalent names in use are Fourier-type condition and radiation condition.
Show more
Related publications (42)

Exponential convergence to steady-states for trajectories of a damped dynamical system modeling adhesive strings

Nicola De Nitti

We study the global well-posedness and asymptotic behavior for a semilinear damped wave equation with Neumann boundary conditions, modeling a one-dimensional linearly elastic body interacting with a rigid substrate through an adhesive material. The key fea ...
World Scientific Publ Co Pte Ltd2024

Semiclassical Estimates for Eigenvalue Means of Laplacians on Spheres

Joachim Stubbe, Luigi Provenzano, Paolo Luzzini, Davide Buoso

We compute three-term semiclassical asymptotic expansions of counting functions and Riesz-means of the eigenvalues of the Laplacian on spheres and hemispheres, for both Dirichlet and Neumann boundary conditions. Specifically for Riesz-means we prove upper ...
SPRINGER2023

Deformation capacity evaluation for flat slab seismic design

Aurelio Muttoni, Lorenzo Martinelli, António Manuel Pinho Ramos, Andri Setiawan

In flat-slab frames, which are typically designed as secondary seismic structures, the shear failure of the slab around the column (punching failure) is typically the governing failure mode which limits the deformation capacity and can potentially lead to ...
SPRINGER2022
Show more
Related MOOCs (3)
The Art of Structures I - Cables and arcs
Ce cours présente les principes du fonctionnement, du dimensionnement et de la conception des structures. L'approche est basée sur une utilisation de la statique graphique et traite en particulier des
The Art of Structures I - Cables and arcs
L'art des structures propose une découverte du fonctionnement des structures porteuses, telles que les bâtiments, les toitures ou les ponts. Ce cours présente les principes du dimensionnement et les s
Sorption and transport in cementitious materials
Learn how to study and improve the durability of cementitious materials.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.