We formulate and solve a new parameter estimation problem in the presence of data uncertainties. The new method is suitable when a priori bounds on the uncertain data are available, and its solution leads to more meaningful results, especially when compared with other methods such as total least-squares and robust estimation. Its superior performance is due to the fact that the new method guarantees that the effect of the uncertainties will never be unnecessarily over-estimated, beyond what is reasonably assumed by the a priori bounds. A geometric interpretation of the solution is provided, along with a closed form expression for it. We also consider the case in which only selected columns of the coefficient matrix are subject to perturbations.
Alexandre Caboussat, Dimitrios Gourzoulidis
Aude Billard, Farshad Khadivar