Publication

Diffusion Least-Mean Squares With Adaptive Combiners: Formulation and Performance Analysis

Ali H. Sayed
2010
Journal paper
Abstract

This paper presents an efficient adaptive combination strategy for the distributed estimation problem over diffusion networks in order to improve robustness against the spatial variation of signal and noise statistics over the network. The concept of minimum variance unbiased estimation is used to derive the proposed adaptive combiner in a systematic way. The mean, mean-square, and steady-state performance analyses of the diffusion least-mean squares (LMS) algorithms with adaptive combiners are included and the stability of convex combination rules is proved. Simulation results show (i) that the diffusion LMS algorithm with the proposed adaptive combiners outperforms those with existing static combiners and the incremental LMS algorithm, and (ii) that the theoretical analysis provides a good approximation of practical performance.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.