Dual graphIn the mathematical discipline of graph theory, the dual graph of a planar graph G is a graph that has a vertex for each face of G. The dual graph has an edge for each pair of faces in G that are separated from each other by an edge, and a self-loop when the same face appears on both sides of an edge. Thus, each edge e of G has a corresponding dual edge, whose endpoints are the dual vertices corresponding to the faces on either side of e.
Connectivity (graph theory)In mathematics and computer science, connectivity is one of the basic concepts of graph theory: it asks for the minimum number of elements (nodes or edges) that need to be removed to separate the remaining nodes into two or more isolated subgraphs. It is closely related to the theory of network flow problems. The connectivity of a graph is an important measure of its resilience as a network. In an undirected graph G, two vertices u and v are called connected if G contains a path from u to v.
Outerplanar graphIn graph theory, an outerplanar graph is a graph that has a planar drawing for which all vertices belong to the outer face of the drawing. Outerplanar graphs may be characterized (analogously to Wagner's theorem for planar graphs) by the two forbidden minors K4 and K2,3, or by their Colin de Verdière graph invariants. They have Hamiltonian cycles if and only if they are biconnected, in which case the outer face forms the unique Hamiltonian cycle. Every outerplanar graph is 3-colorable, and has degeneracy and treewidth at most 2.
Mixed graphIn graph theory, a mixed graph G = (V, E, A) is a graph consisting of a set of vertices V, a set of (undirected) edges E, and a set of directed edges (or arcs) A. Consider adjacent vertices . A directed edge, called an arc, is an edge with an orientation and can be denoted as or (note that is the tail and is the head of the arc). Also, an undirected edge, or edge, is an edge with no orientation and can be denoted as or . For the purpose of our application example we will not be considering loops or multiple edges of mixed graphs.
Graph (discrete mathematics)In discrete mathematics, and more specifically in graph theory, a graph is a structure amounting to a set of objects in which some pairs of the objects are in some sense "related". The objects correspond to mathematical abstractions called vertices (also called nodes or points) and each of the related pairs of vertices is called an edge (also called link or line). Typically, a graph is depicted in diagrammatic form as a set of dots or circles for the vertices, joined by lines or curves for the edges.
Directed graphIn mathematics, and more specifically in graph theory, a directed graph (or digraph) is a graph that is made up of a set of vertices connected by directed edges, often called arcs. In formal terms, a directed graph is an ordered pair where V is a set whose elements are called vertices, nodes, or points; A is a set of ordered pairs of vertices, called arcs, directed edges (sometimes simply edges with the corresponding set named E instead of A), arrows, or directed lines.
Perfect graph theoremIn graph theory, the perfect graph theorem of states that an undirected graph is perfect if and only if its complement graph is also perfect. This result had been conjectured by , and it is sometimes called the weak perfect graph theorem to distinguish it from the strong perfect graph theorem characterizing perfect graphs by their forbidden induced subgraphs. A perfect graph is an undirected graph with the property that, in every one of its induced subgraphs, the size of the largest clique equals the minimum number of colors in a coloring of the subgraph.
Chordal graphIn the mathematical area of graph theory, a chordal graph is one in which all cycles of four or more vertices have a chord, which is an edge that is not part of the cycle but connects two vertices of the cycle. Equivalently, every induced cycle in the graph should have exactly three vertices. The chordal graphs may also be characterized as the graphs that have perfect elimination orderings, as the graphs in which each minimal separator is a clique, and as the intersection graphs of subtrees of a tree.
Graph theoryIn mathematics, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of vertices (also called nodes or points) which are connected by edges (also called links or lines). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics.
Component (graph theory)In graph theory, a component of an undirected graph is a connected subgraph that is not part of any larger connected subgraph. The components of any graph partition its vertices into disjoint sets, and are the induced subgraphs of those sets. A graph that is itself connected has exactly one component, consisting of the whole graph. Components are sometimes called connected components. The number of components in a given graph is an important graph invariant, and is closely related to invariants of matroids, topological spaces, and matrices.