In mathematics, and more specifically in graph theory, a directed graph (or digraph) is a graph that is made up of a set of vertices connected by directed edges, often called arcs. In formal terms, a directed graph is an ordered pair where V is a set whose elements are called vertices, nodes, or points; A is a set of ordered pairs of vertices, called arcs, directed edges (sometimes simply edges with the corresponding set named E instead of A), arrows, or directed lines. It differs from an ordinary or undirected graph, in that the latter is defined in terms of unordered pairs of vertices, which are usually called edges, links or lines. The aforementioned definition does not allow a directed graph to have multiple arrows with the same source and target nodes, but some authors consider a broader definition that allows directed graphs to have such multiple arcs (namely, they allow the arc set to be a multiset). Sometimes these entities are called directed multigraphs (or multidigraphs). On the other hand, the aforementioned definition allows a directed graph to have loops (that is, arcs that directly connect nodes with themselves), but some authors consider a narrower definition that does not allow directed graphs to have loops. Directed graphs without loops may be called simple directed graphs, while directed graphs with loops may be called loop-digraphs (see section Types of directed graph). Graph (discrete mathematics)#Types of graphs Symmetric directed graphs are directed graphs where all edges appear twice, one in each direction (that is, for every arrow that belongs to the digraph, the corresponding inverse arrow also belongs to it). (Such an edge is sometimes called "bidirected" and such graphs are sometimes called "bidirected", but this conflicts with the meaning for bidirected graphs.) Simple directed graphs are directed graphs that have no loops (arrows that directly connect vertices to themselves) and no multiple arrows with same source and target nodes.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (32)
MATH-448: Statistical analysis of network data
A first course in statistical network analysis and applications.
MGT-416: Causal inference
Students will learn the core concepts and techniques of network analysis with emphasis on causal inference. Theory and application will be balanced, with students working directly with network data th
CS-455: Topics in theoretical computer science
The students gain an in-depth knowledge of several current and emerging areas of theoretical computer science. The course familiarizes them with advanced techniques, and develops an understanding of f
Show more
Related lectures (30)
Exponential Family
Covers the concept of the exponential family and discusses forward and backward maps, expensive computations, parameters, functions, and convexity.
Connectivity in Graph Theory
Covers the fundamentals of connectivity in graph theory, including paths, cycles, and spanning trees.
Directed Networks & Hypergraphs
Explores directed networks with asymmetric relationships and hypergraphs that generalize graphs by allowing edges to connect any subset of nodes.
Show more
Related publications (32)
Related concepts (32)
Arborescence (graph theory)
In graph theory, an arborescence is a directed graph in which, for a vertex u (called the root) and any other vertex v, there is exactly one directed path from u to v. An arborescence is thus the directed-graph form of a rooted tree, understood here as an undirected graph. Equivalently, an arborescence is a directed, rooted tree in which all edges point away from the root; a number of other equivalent characterizations exist. Every arborescence is a directed acyclic graph (DAG), but not every DAG is an arborescence.
Loop (graph theory)
In graph theory, a loop (also called a self-loop or a buckle) is an edge that connects a vertex to itself. A simple graph contains no loops. Depending on the context, a graph or a multigraph may be defined so as to either allow or disallow the presence of loops (often in concert with allowing or disallowing multiple edges between the same vertices): Where graphs are defined so as to allow loops and multiple edges, a graph without loops or multiple edges is often distinguished from other graphs by calling it a simple graph.
Connectivity (graph theory)
In mathematics and computer science, connectivity is one of the basic concepts of graph theory: it asks for the minimum number of elements (nodes or edges) that need to be removed to separate the remaining nodes into two or more isolated subgraphs. It is closely related to the theory of network flow problems. The connectivity of a graph is an important measure of its resilience as a network. In an undirected graph G, two vertices u and v are called connected if G contains a path from u to v.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.