Publication

Characterization at the Atomistic Level of Defective Structures in Complex Materials

Piyush Agrawal
2017
EPFL thesis
Abstract

Defects are key to enhance or deploy particular materials properties. In this thesis I present analyses of the impact of defects on the electronic structure of materials using combined experimental and theoretical Electron energy loss spectroscopy (EELS) in (Scanning) Transmission Electron Microscopy. The energy loss near-edge structure (ELNES) in EELS reflects the element-specific electronic structure providing insights into bonding characteristics of individual atomic species. New electron optical devices have boosted the analytical capabilities by which materials can be investigated with atomic resolution and single atom sensitivity using (scanning) transmission electron spectroscopy (STEM/TEM).With the help of aberration correctors for forming small electron probes, high intensity electron beams can nowadays be focused to clearly less than 100 pm which has enhanced the resolution and sensitivity in analytical scanning transmission electron microscopy (STEM). Various kinds of defects in different complex oxides were studied: point defects like oxygen vacancies in BiVO4 and SrMnO3, edge-dislocations in BiFeO3, and planar defects in GaAs. By comparison with experimental data, structures for these systems were proposed based on all-electron density functional theory (DFT) code Wien2k. By comparing theoretical calculations and experimental data, a pronounced surface reduction in the oxidation state of vanadium in BiVO4 from +5 to +4 was unveiled, which is due to a high density of oxygen vacancies, and its importance in potential application of BiVO4 in photoelectrochemical energy conversion. A similar study was performed on a series of SrMnO3 thin films with different epitaxial strain where theoretical investigations revealed the impact of oxygen non-stoichiometry and strain on the O-K ELNES. In the next study, molecular dynamics simulations were combined with FEFF-based EELS calculations and its comparison with experiments was helpful for the correct prediction of the edge dislocation core structure in BiFeO3. This study also confirmed the presence of Fe atoms in the core of the edge dislocation which possibly makes these defects ferromagnetic whereas the bulk structure is known to be antiferromagnetic. This thesis has established methodologies for utilizing different codes, illustrating how links between experimental and theoretical ELNES can be used in revealing structural information around defects and how defects affect materials properties. This tandem methodology of theory and experiments is applicable to various future materials where the reliable interpretation of EELS data is pivotal in unfolding mysteries of such technologically important materials.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (34)
Transmission electron microscopy
Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a sensor such as a scintillator attached to a charge-coupled device.
Electron microscope
An electron microscope is a microscope that uses a beam of electrons as a source of illumination. They use electron optics that are analogous to the glass lenses of an optical light microscope. As the wavelength of an electron can be up to 100,000 times shorter than that of visible light, electron microscopes have a higher resolution of about 0.1 nm, which compares to about 200 nm for light microscopes.
Scanning transmission electron microscopy
A scanning transmission electron microscope (STEM) is a type of transmission electron microscope (TEM). Pronunciation is [stɛm] or [ɛsti:i:ɛm]. As with a conventional transmission electron microscope (CTEM), images are formed by electrons passing through a sufficiently thin specimen. However, unlike CTEM, in STEM the electron beam is focused to a fine spot (with the typical spot size 0.05 – 0.2 nm) which is then scanned over the sample in a raster illumination system constructed so that the sample is illuminated at each point with the beam parallel to the optical axis.
Show more
Related publications (175)

Composition and Element Distribution Mapping of γ′ and γ" Phases of Inconel 718 by High-Resolution Scanning Transmission Electron Microscopy and X-ray Energy-Dispersive Spectrometry

Philippe Buffat

The main strengthening mechanism for Inconel 718 (IN718), a Ni-based superalloy, is precipitation hardening by gamma ' and gamma '' particles. It is thus essential, for good alloy performance, that precipitates with the desired chemical composition have ad ...
Basel2024

Atomic-scale Characterization of Strain and Gate effects on Two-dimensional Materials by Scanning Tunneling Microscopy

Jz -Yuan Juo

Strain is an inevitable phenomenon in two-dimensional (2D) material, regardless of whether the film is suspended or supported. Moreover, strain is known to alter the physical and chemical properties, such as the band gap, charge carrier effective masses, d ...
EPFL2023

Monolithic InSb nanostructure photodetectors on Si using rapid melt growth

Anna Fontcuberta i Morral, Nicholas Paul Morgan, Heera Menon

Monolithic integration of InSb on Si could be a key enabler for future electronic and optoelectronic applications. In this work, we report the fabrication of InSb metal-semiconductor-metal photodetectors directly on Si using a CMOS-compatible process known ...
ROYAL SOC CHEMISTRY2023
Show more
Related MOOCs (17)
Transmission Electron Microscopy for Materials Sciences
Learn about the fundamentals of transmission electron microscopy in materials sciences: you will be able to understand papers where TEM has been used and have the necessary theoretical basis for takin
Transmission Electron Microscopy for Materials Sciences
Learn about the fundamentals of transmission electron microscopy in materials sciences: you will be able to understand papers where TEM has been used and have the necessary theoretical basis for takin
Synchrotrons and X-Ray Free Electron Lasers (part 1)
Synchrotrons and X-Ray Free Electron Lasers (part 1)
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.