Optical Tomography Based On A Nonlinear Model That Handles Multiple Scattering
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We consider the problem of finding a saddle point for the convex-concave objective minxmaxyf(x)+⟨Ax,y⟩−g∗(y), where f is a convex function with locally Lipschitz gradient and g is convex and possibly non-smooth. We propose an ...
We characterize the solution of a broad class of convex optimization problems that address the reconstruction of a function from a finite number of linear measurements. The underlying hypothesis is that the solution is decomposable as a finite sum of compo ...
Non-convex constrained optimization problems have become a powerful framework for modeling a wide range of machine learning problems, with applications in k-means clustering, large- scale semidefinite programs (SDPs), and various other tasks. As the perfor ...
This work develops new algorithms with rigorous efficiency guarantees for infinite horizon imitation learning (IL) with linear function approximation without restrictive coherence assumptions. We begin with the minimax formulation of the problem and then o ...
Many scientific inquiries in natural sciences involve approximating a spherical field -namely a scalar quantity defined over a continuum of directions- from generalised samples of the latter (e.g. directional samples, local averages, etc). Such an approxim ...
Semidefinite programming (SDP) is a powerful framework from convex optimization that has striking potential for data science applications. This paper develops a provably correct algorithm for solving large SDP problems by economizing on both the storage an ...
In several domains of physics, including first principle simulations and classical models for polarizable systems, the minimization of an energy function with respect to a set of auxiliary variables must be performed to define the dynamics of physical degr ...
Enabling analysis of non-linear systems in linear form, the Koopman operator has been shown to be a powerful tool for system identification and controller design. However, current data-driven methods cannot provide quantification of model uncertainty given ...
Developing classification algorithms that are fair with respect to sensitive attributes of the data is an important problem due to the increased deployment of classification algorithms in societal contexts. Several recent works have focused on studying cla ...
A broad class of convex optimization problems can be formulated as a semidefinite program (SDP), minimization of a convex function over the positive-semidefinite cone subject to some affine constraints. The majority of classical SDP solvers are designed fo ...