Publication

Integration of passenger satisfaction in railway timetable rescheduling for major disruptions

Abstract

Unexpected disruptions occur for many reasons in railway networks and cause delays, cancellations, and, eventually, passenger inconvenience. This thesis focuses on the railway timetable rescheduling problem from a macroscopic point of view in case of large disruptions, such as track unvailabilities due to, e.g., rolling stock malfunction or adverse weather conditions. Its originality is to consider three objectives when designing the so-called disposition timetable: the passenger satisfaction, the operational cost and the deviation from the undisrupted timetable. These goals are usually incompatible: for instance, the best possible service for the passengers may also be the most expensive option for the railway operator. This inadequacy is the key motivation for this thesis.

The problem is formally defined as a multi-objective Integer Linear Program and solved to optimality on realistic instances. In order to understand the trade-offs between the objectives, the three-dimensional Pareto frontier is approximated using epsilon-constraints. The results on a Dutch case study indicate that adopting a demand-oriented approach for the management of disruptions not only is possible, but may lead to significant improvement in passenger satisfaction, associated with a low operational cost of the disposition timetable.

For a more efficient investigation of the multiple dimensions of the problem, a heuristic solution algorithm based on adaptive large neighborhood search is also presented. The timetable is optimized using operators inspired directly from recovery strategies used in practice (such as canceling, delaying or rerouting trains, or scheduling additional trains and buses), and from optimization methods (e.g., feasibility restoration operators). Results on a Swiss case study indicate that the proposed solution approach performs well on large-scale problems, in terms of computational time and solution quality.

In addition, a flexible network loading framework, defining priorities among passengers for the capacitated passenger assignment problem, is introduced. Being efficient and producing stable aggregate passenger satisfaction indicators (such as average travel time), it is used in an iterative manner for the evaluation from the passenger perspective of the timetable provided by the rescheduling meta-heuristic.

The timetable rescheduling problem is a hard problem and this thesis makes significant methodological and practical contributions to the design of passenger-centric disposition timetables. It is the first attempt to explicitly integrate multiple objectives in a single framework for railway timetable rescheduling, as the state-of-the-art usually neglects passenger considerations, or considers them only implicitly. Further, the use of practice-inspired optimization methods allows railway operators to easily implement the results of the proposed framework.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (40)
Multi-objective optimization
Multi-objective optimization or Pareto optimization (also known as multi-objective programming, vector optimization, multicriteria optimization, or multiattribute optimization) is an area of multiple-criteria decision making that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously. Multi-objective is a type of vector optimization that has been applied in many fields of science, including engineering, economics and logistics where optimal decisions need to be taken in the presence of trade-offs between two or more conflicting objectives.
Mathematical optimization
Mathematical optimization (alternatively spelled optimisation) or mathematical programming is the selection of a best element, with regard to some criterion, from some set of available alternatives. It is generally divided into two subfields: discrete optimization and continuous optimization. Optimization problems arise in all quantitative disciplines from computer science and engineering to operations research and economics, and the development of solution methods has been of interest in mathematics for centuries.
Tabu search
Tabu search (TS) is a metaheuristic search method employing local search methods used for mathematical optimization. It was created by Fred W. Glover in 1986 and formalized in 1989. Local (neighborhood) searches take a potential solution to a problem and check its immediate neighbors (that is, solutions that are similar except for very few minor details) in the hope of finding an improved solution. Local search methods have a tendency to become stuck in suboptimal regions or on plateaus where many solutions are equally fit.
Show more
Related publications (112)

Mesh-based topology, shape and sizing optimization of ribbed plates

In this paper, we present a new parameterization and optimization procedure for minimizing the weight of ribbed plates. The primary goal is to reduce embodied CO2 in concrete floors as part of the effort to diminish the carbon footprint of the construction ...
Springer2024

A combined genetic algorithm and active learning approach to build and test surrogate models in Process Systems Engineering

François Maréchal, Julia Granacher

In Process Systems Engineering, computationally-demanding models are frequent and plentiful. Handling such complexity in an optimization framework in a fast and reliable way is essential, not only for generating meaningful solutions but also for providing ...
Oxford2023

Modeling and Design Optimization of Loosely Coupled PCB Spiral Coils in Inductive Power Transfer Systems

Drazen Dujic, Xiaotong Du

There are various possibilities to realize coil winding designs for an inductive power transfer system. In order to achieve high power transfer efficiency and power density and explore trade-offs between the two, design optimization around the coil link is ...
2023
Show more
Related MOOCs (13)
Introduction to optimization on smooth manifolds: first order methods
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
Show more