In Vivo Heteronuclear Magnetic Resonance Spectroscopy
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Major breakthroughs have recently been reported that can help overcome two inherent drawbacks of NMR: the lack of sensitivity and the limited memory of longitudinal magnetization. Dynamic nuclear polarization (DNP) couples nuclear spins to the large reserv ...
Positron emission tomography (PET) and nuclear magnetic resonance spectroscopy (MRS) are two biomedical measurement techniques developed in the end of the XXth century, which drastically improved the amount of accessible information available in vivo. PET ...
A major challenge in cancer biology is to monitor and understand cancer metabolism in vivo with the goal of improved diagnosis and perhaps therapy. Because of the complexity of biochemical pathways, tracer methods are required for detecting specific enzyme ...
Nuclear magnetic resonance (NMR) spectroscopy can be applied in vivo to measure static or dynamic biochemical information, e.g., concentrations of metabolites and metabolic fluxes, using various nuclei such as 1H, 13C, 31P and 15N. The work of this thesis ...
Unambiguous identification of individual metabolites present in complex mixtures such as biofluids constitutes a crucial prerequisite for quantitative metabolomics, toward better understanding of biochemical processes in living systems. Increasing the dime ...
Nuclear magnetic resonance (NMR) is used for a large array of applications, ranging from chemical characterization to oil drilling to medical imaging. In these fields NMR is used as an investigational tool, but new techniques and applications are continuou ...
Multidimensional acquisitions play a central role in the progress and applications of nuclear magnetic resonance (NMR) spectroscopy. Such experiments have been collected traditionally as an array of one-dimensional scans, with suitably incremented delay pa ...
Despite obvious improvements in spectral resolution at high magnetic field, the detection of C-13 labeling by H-1-[C-13] NMR spectroscopy remains hampered by spectral overlap, such as in the spectral region of H-1 resonances bound to C3 of glutamate (Glu) ...
Nuclear magnetic resonance (NMR) can be used in-vivo in a vast array of applications, such as anatomical imaging (magnetic resonance imaging, MRI), localized chemical composition characterization (magnetic resonance spectroscopy, MRS), cellular structure a ...